首页> 中文期刊> 《计算机系统应用》 >基于Doc2Vec与SVM的聊天内容过滤

基于Doc2Vec与SVM的聊天内容过滤

     

摘要

直播系统中用户聊天内容的实时拦截具有非常重大的意义,为了提高分类的准确率和效率,提出了一种基于Doc2Vec与SVM结合的文本分类模型对聊天内容分类,判断聊天内容是否应该被拦截.首先使用Doc2Vec模型将聊天内容表示成密集数值向量的形式,第二部分使用SVM分类器进行分类.通过实验表明,该模型有效地减少了文本表示的维度,提高了训练效率,而且具有的97%的准确率和89.82%召回率,性能优于朴素贝叶斯和基于Doc2Vec的Logistic模型.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号