首页> 中文期刊> 《计算机工程》 >基于深度多相似性哈希方法的遥感图像检索

基于深度多相似性哈希方法的遥感图像检索

     

摘要

哈希方法由于低存储、高效率的特性而被广泛应用于遥感图像检索领域。面向遥感图像检索任务的无监督哈希方法存在伪标签不可靠、图像对的训练权重相同以及图像检索精度较低等问题,为此,提出一种基于深度多相似性哈希(DMSH)的遥感图像检索方法。针对优化伪标签和训练关注度分别构建自适应伪标签模块(APLM)和成对结构信息模块(PSIM)。APLM采用K最近邻和核相似度来评估图像间的相似关系,实现伪标签的初始生成和在线校正。PSIM将图像对的多尺度结构相似度映射为训练关注度,为其分配不同的训练权重从而优化深度哈希学习。DMSH通过Swin Transformer骨干网络提取图像的高维特征,将基于语义相似矩阵的伪标签作为监督信息以训练深度网络,同时网络在两个基于不同相似度设计的模块上实现交替优化,充分挖掘图像间的多种相似信息进而生成具有高辨识力的哈希编码,实现遥感图像的高精度检索。实验结果表明,DMSH在EuroSAT和PatternNet数据集上的平均精度均值较对比方法分别提高0.8%~3.0%和9.8%~12.5%,其可以在遥感图像检索任务中取得更高的准确率。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号