首页> 中文期刊> 《计算机工程与科学》 >基于深度学习的短临降水预报综述

基于深度学习的短临降水预报综述

     

摘要

短临降水预报是指短期内降水的高分辨率预测,是一项重要但又困难的任务。在深度学习的背景下,它被视为一个基于雷达回波图的时空序列预测问题。降水预测是一个复杂的自我监督任务,由于运动总是在空间和时间维度上发生显著的变化,普通模型难以应对复杂的非线性时空转换,导致预测模糊。因此,如何进一步提高模型预测性能减少模糊是该领域研究的重点。目前关于短临降水预报的研究仍处于早期阶段,并且对已有的研究工作缺乏系统性的分类和讨论。因此,有必要对该领域进行全面调研。从不同维度全面总结和分析了短临降水预报领域的相关知识,并给出了未来的研究方向,具体内容如下:(1)阐明了短临降水预报的重要意义以及传统预测模型的优缺点;(2)给出了短临降水预报问题的数学定义;(3)全面总结和分析了常见的预测模型;(4)介绍了不同国家和地区的多个开源雷达数据集;(5)简单介绍了用于预测质量评估的度量指标;(6)讨论了不同模型中所使用的不同的损失函数;(7)指明了未来短临降水预报领域的研究方向。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号