首页> 中文期刊> 《计算机工程与设计》 >基于视觉注意力的图文跨模态情感分析

基于视觉注意力的图文跨模态情感分析

     

摘要

针对单模态情感分析无法完全捕获情感信息的问题,提出一种图像和文本跨模态情感分析模型(BERT-VistaNet),该模型没有直接使用视觉信息作为特征,而是利用视觉信息作为对齐方式,使用注意力机制指出文本中重要的句子,得到基于视觉注意力的文档表示。对于视觉注意力无法完全覆盖的文本内容,使用BERT模型对文本进行情感分析,得到基于文本的文档表示,将特征进行融合应用于情感分类任务。在Yelp公开餐厅数据集上,该模型相比基线模型TFN-aVGG,准确率提高了43%,相比VistaNet模型准确率提高了1.4%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号