首页> 中文期刊> 《计算机工程与应用》 >信息熵角度下的深度学习旁路安全评估框架

信息熵角度下的深度学习旁路安全评估框架

     

摘要

基于深度学习的建模类旁路密码分析(Deep Learning Side Channel Analysis/Attack,DLSCA)对于各种旁路攻击场景的密码破解效果都十分显著,但是DLSCA仍存有安全评估问题.基于AES对称加密算法的能量分析,通过信息熵角度分析准确率等传统机器学习性能指标无法评估DLSCA深度神经网络(Deep Neural Network,DNN)模型训练程度的原因.定义密钥信息量,分别阐释密钥信息量与旁路安全评估、DNN模型训练阶段性能评估的关系,建立深度学习模型与旁路分析二者的联系,提出以密钥信息量为核心的DLSCA安全评估框架.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号