首页> 中文期刊> 《计算机工程与应用》 >基于迁移学习的多任务分配算法

基于迁移学习的多任务分配算法

     

摘要

对于多任务分配问题,传统的方法针对每一个任务独立地寻找一个最优分配方案,没有考虑任务间的关联以及历史经验对新任务分配的影响,因而复杂度较高.研究了多智能体系统中的多任务分配问题,通过迁移学习来加速任务分配以及子任务的完成.在分配目标任务时,通过计算当前任务和历史任务的相似度找到最适合的源任务,再将源任务的分配模式迁移到目标任务中,并在完成子任务的过程中使用迁移学习,从而提高效率,节约时间.最后,通过"格子世界"的实验证明了该算法在运行时间和平均带折扣回报方面都优于基于Q学习的任务分配算法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号