首页> 外文期刊>IEEE transactions on industrial informatics >Multi-timescale Forecast of Solar Irradiance Based on Multi-task Learning and Echo State Network Approaches
【24h】

Multi-timescale Forecast of Solar Irradiance Based on Multi-task Learning and Echo State Network Approaches

机译:基于多任务学习和回声状态网络方法的基于多任务学习的太阳辐照度的多时间段验

获取原文
获取原文并翻译 | 示例

摘要

Solar irradiance forecast is closely related with efficiency and reliability of renewable energy systems. Multi-timescale irradiance forecast is a new and efficient way to simultaneously predict solar energy generation on different timescales for hierarchical decision making. This article newly adopts the multi-task learning mechanism to study the multi-timescale forecast for improving accuracy and computational efficiency. A novel multi-timescale (MTS) prediction framework is presented to fulfill the multi-task application, and echo state network (ESN) is studied in the proposed MTS framework. The multi-timescale ESN (MTS-ESN) is proposed to enhance the information sharing among correlated tasks. Simulation results of hourly solar data demonstrate that the proposed MTS-ESN could achieve promising performance at both hourly and daily level in parallel. The MTS-ESN outperforms the single-timescale ESN (STS-ESN), which indicates the information sharing in the multi-task learning is effective in this application.
机译:太阳辐照度预测与可再生能源系统的效率和可靠性密切相关。多时间验证辐照度预测是一种新的有效的方式,可以在不同时间尺度上同时预测用于分层决策的不同时间尺度。本文新建采用多任务学习机制来研究提高准确性和计算效率的多时间段势预测。提出了一种新的多时间尺度(MTS)预测框架以满足多任务应用程序,并在所提出的MTS框架中研究了回声状态网络(ESN)。提出了多时间级eSn(MTS-ESN)以增强相关任务之间的信息共享。每小时太阳能数据的仿真结果表明,所提出的MTS-ESN可以在每小时和日常水平并行地实现有希望的性能。 MTS-ESN优于单模ESN(STS-ESN),这表示在此应用程序中有效的多任务学习中共享的信息共享。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号