首页> 中文期刊> 《计算机工程与应用》 >基于Hebbian一致性学习的P2P推荐算法

基于Hebbian一致性学习的P2P推荐算法

     

摘要

借鉴社会网络的概念,构建了一个基于信任权值的P2P(peer-to-peer)推荐网络,其中每个对等体作为一个用户代理负责维护其在推荐网络中的信任邻居关系.在此基础上,提出了一种基于Hebbian一致性学习的信任权重学习算法,并且基于相似用户发现机制、信任权重学习规则、潜在邻居调整策略等来自适应地调整用户与邻居用户的信任权重.实验数据证明该算法具有较高的推荐效率、社区构建效率和良好的可扩展性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号