首页> 中文期刊> 《计算机工程与应用》 >机器人全覆盖最优路径规划的改进遗传算法

机器人全覆盖最优路径规划的改进遗传算法

     

摘要

A special kind of path planning is complete coverage path planning.There are a lot of algorithms on this problem have been developed,e.g.template based,cellular decomposition.But these algorithms just cover the complete area;they are not designed to optimize the process.This paper presents a method of complete coverage path planning based on genetic algorithms, which combine the advantages of cellular decomposition and template algorithm.The environment is divided in sub-regions as in rectangular decomposition method,and then Genetic Algorithms (GA) is used to compute and find the order of the sub-regions and the appropriate template for each region. The algorithm is tested in the virtual environment;the simulation results confirm the feasibility of this method.%全区域覆盖是一种特殊的路径规划,要求遍历环境中所有的可达区域.目前已经提的许多算法,如模板算法、分块算法等,都只能保证覆盖所有的区域,对于寻找全局最优解却无能为力.提出了一种基于遗传算法的全区域覆盖算法,结合分决算法和模板算法的优点.先采用矩形分解法将环境划分成若干个相邻的子模块,并为每一个子模块选用相应的模板,从而生成覆盖路径,然后采用遗传算法找出最优的路径.算法在虚拟环境中进行了实验,实验结果证明了其可行性和有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号