首页> 中文期刊> 《计算机应用与软件》 >基于词性特征的CNN_BiGRU文本分类模型

基于词性特征的CNN_BiGRU文本分类模型

     

摘要

传统词嵌入通常将词项的不同上下文编码至同一参数空间,造成词向量未能有效辨别多义词的语义;CNN网络极易关注文本局部特征而忽略文本时序语义,BiGRU网络善于学习文本时序整体语义,造成关键局部特征提取不足.针对上述问题,提出一种基于词性特征的CNN_BiGRU文本分类模型.引入词性特征构建具有词性属性的词性向量;将词性向量与词向量交叉组合形成增强词向量,以改善文本表示;采用CNN网络获取增强词向量的局部表示,利用BiGRU网络捕获增强词向量的全局上下文表示;融合两模型学习的表示形成深度语义特征;将该深度语义特征连接至Softmax分类器完成分类预测.实验结果表明,该模型提高了分类准确率,具有良好的文本语义建模和识别能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号