首页> 中文期刊> 《计算机应用与软件》 >基于T-YOLO-LITE树干检测的模型部署方法

基于T-YOLO-LITE树干检测的模型部署方法

     

摘要

为解决猕猴桃采摘机器人视觉导航问题,提出基于T-YOLO-LITE的猕猴桃树干检测方法.通过保留BN层、调整输入图像尺寸、修改anchor boxes、添加负样本对YOLO-LITE进行改进,并利用Movidius与OpenCV-DNN将改进后的模型分别部署在树莓派与CPU设备中.实验结果表明:通过改进优化使模型检测精度提升至59.75%;利用Movidius与OpenCV-DNN部署后,模型检测速度分别达到了2帧每秒和6帧每秒.该模型在检测精度与YOLOV2-TINY持平的情况下,检测速度为YOLOV2-TINY的两倍,并在非GPU设备上完成近实时的树干检测任务.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号