首页> 外文学位 >Detailed Spatial Modeling of Coal-based Hydrogen Infrastructure Deployment with Carbon Capture and Storage: Methods, Implications, and Insights.
【24h】

Detailed Spatial Modeling of Coal-based Hydrogen Infrastructure Deployment with Carbon Capture and Storage: Methods, Implications, and Insights.

机译:基于碳捕集与封存的煤制氢基础设施部署的详细空间模型:方法,含义和见解。

获取原文
获取原文并翻译 | 示例

摘要

The use of hydrogen as a transportation fuel has been proposed as a potential solution to three major issues facing the transport sector: climate change, energy security, and local air quality. However there are significant barriers to the introduction of hydrogen, including the cost and performance of vehicle technologies (e.g., fuel cells and onboard storage) and the cost and lack of a hydrogen infrastructure (e.g., production and storage facilities, distribution networks, and refueling stations). The development of this infrastructure is considered a major obstacle since it will require significant capital investment over a long time period with high investment risk. Consequently, models are needed that can identify the magnitude of required infrastructure and evaluate its cost for various deployment strategies. Most existing hydrogen infrastructure models are steady-state models that estimate infrastructure design and cost at a fixed point in time. These models assume that the infrastructure is perfectly sized for the current hydrogen demand and, thus, estimate the levelized cost of hydrogen assuming fully utilized infrastructure. Yet, the reality is that much of this infrastructure (e.g., centralized production facilities) will need to be installed in relatively large sizes, rendering it difficult to perfectly match supply and demand throughout a transition. As a result, it is likely that infrastructure capacity will be underutilized to varying degrees during deployment. Another weakness of existing models is that they rarely incorporate the spatial aspect of infrastructure design and, when they do, simplified spatial representations are used. However, the optimal design of hydrogen infrastructure will likely depend on regional characteristics, such as feedstock prices, the spatial distribution of hydrogen demand, and the locations of potential sites for hydrogen production and transport. Consequently, detailed spatial data will likely yield important insights into the design and cost of hydrogen infrastructure.;This dissertation presents a new model that better accounts for the spatial and temporal aspects of infrastructure deployment. In Chapter 2, a novel modeling method is described that combines detailed spatial data with optimization tools to evaluate how hydrogen infrastructure might develop in specific geographic regions over time. Unlike existing infrastructure models, the model described in this document utilizes higher resolution spatial data and has the capability to identify integrated regional pipeline networks that connect multiple production facilities to multiple demand centers (i.e., cities). In addition, by tracking infrastructure investments over time, the model accounts for underutilization of infrastructure given different scenarios for hydrogen fuel cell vehicle (HFCV) deployment. Although the model can be applied to multiple infrastructure pathways, this research focuses on centralized coal-based hydrogen production with carbon capture and storage (CCS) and distribution of hydrogen by pipeline. In Chapter 3, the model is applied to a case study in the western United States, which explores optimal strategies for deploying hydrogen infrastructure in a large region. This chapter discusses the design, cost, greenhouse gas emissions, and CO2 capacity constraints under different deployment strategies and subsidy scenarios. In Chapter 4, the model is applied to several sub-regions in the western United States in order to better understand how regional characteristics impact the design and cost of hydrogen infrastructure.
机译:已经提出使用氢作为运输燃料是解决运输部门面临的三个主要问题的潜在解决方案:气候变化,能源安全和当地空气质量。但是,引入氢存在很大的障碍,包括车辆技术的成本和性能(例如燃料电池和车载存储)以及氢基础设施的成本和缺乏(例如生产和存储设施,配电网络以及加油)站)。这种基础设施的发展被认为是主要障碍,因为它将需要长期的大量资本投资以及高投资风险。因此,需要可以识别所需基础架构规模并评估其各种部署策略成本的模型。现有的大多数氢基础设施模型都是稳态模型,可在固定时间点估算基础设施设计和成本。这些模型假设基础设施的大小适合当前的氢气需求,因此,假设基础设施得到充分利用,则可以估算氢气的平准化成本。但是,现实情况是,许多此类基础结构(例如集中式生产设施)将需要以相对较大的尺寸进行安装,因此很难在整个过渡过程中完美地匹配供需关系。结果,在部署过程中,基础架构容量可能会在不同程度上被未充分利用。现有模型的另一个缺点是,它们很少包含基础结构设计的空间方面,并且当它们这样做时,将使用简化的空间表示。但是,氢气基础设施的最佳设计可能取决于区域特征,例如原料价格,氢气需求的空间分布以及潜在的氢气生产和运输地点。因此,详细的空间数据将可能对氢基础设施的设计和成本产生重要的见解。本论文提出了一种新模型,可以更好地说明基础设施部署的时空方面。在第2章中,将介绍一种新颖的建模方法,该方法将详细的空间数据与优化工具结合在一起,以评估氢基础设施在特定地理区域内如何随时间发展。与现有的基础设施模型不同,本文档中描述的模型利用了更高分辨率的空间数据,并具有识别将多个生产设施连接到多个需求中心(即城市)的集成区域管道网络的能力。此外,通过跟踪一段时间内的基础设施投资,该模型考虑了氢燃料电池汽车(HFCV)部署不同场景下基础设施的利用不足。尽管该模型可以应用于多种基础设施路径,但本研究的重点是通过碳捕集与封存(CCS)进行集中式煤制氢以及通过管道分配氢。在第3章中,将该模型应用于美国西部的案例研究,该案例探讨了在大区域部署氢基础设施的最佳策略。本章讨论了不同部署策略和补贴方案下的设计,成本,温室气体排放和CO2容量限制。在第4章中,该模型应用于美国西部的几个子区域,以便更好地了解区域特征如何影响氢基础设施的设计和成本。

著录项

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Alternative Energy.;Energy.;Geodesy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 306 p.
  • 总页数 306
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号