首页> 中文期刊> 《计算机应用与软件》 >基于深度信念网络的CYP4502C9抑制性分类

基于深度信念网络的CYP4502C9抑制性分类

     

摘要

细胞色素P450 2C9 (Cytochrome P450 2C9)是人体肝脏中重要的代谢酶,参与多种药物代谢,约占CYP450蛋白总量的15% ~ 20%.利用深度学习思想,提出基于深度信念网络DBN(Deep Belief Network)的CYP450 2C9抑制性分类模型.实验选用13 000个化合物作为数据集,采用PubChem和MACCS分子指纹进行分子结构表征.利用DBN的半监督学习方式从预处理后的特征中学习更本质的特征表示,避免人工提取特征的过程,实现CYP450 2C9的抑制性分类.实验结果表明:在同等条件下,DBN相比于SVM和ANN具有明显优势,平均分类准确率为80.6%,灵敏度(SE)为86.9%,特异性(SP)为66.2%,对药物筛选和新药研发具有积极意义.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号