首页> 外文期刊>International journal of computational vision and robotics >3D object classification based on deep belief networks and point clouds
【24h】

3D object classification based on deep belief networks and point clouds

机译:基于深度信念网络和点云的3D对象分类

获取原文
获取原文并翻译 | 示例

摘要

Since the discovery of 3D sensors such as Kinect camera, 3D object models, and point clouds become frequently used in many areas. The most important one is the 3D object recognition and classification in robotic applications. This type of sensors, like the human vision, allows generating the object model from a field of view or even a complete 3D object model by combining several individual Kinect frames. In this work, we propose a new feature learning-based object classification approach using point cloud library (PCL) detectors and descriptors and deep belief networks (DBNs). Before developing the classification approach, we evaluate 3D descriptors by proposing a new pipeline that uses the L2-distance and the recognition threshold. 3D descriptors are computed on different datasets, in order to achieve the best descriptors. Subsequently, these descriptors are used to learn robust features in the classification approach using DBNs. We evaluate the performance of these contributions on two datasets; Washington RGB-D and our real 3D object datasets. The results show that the proposed approach outperforms advanced methods by approximately 5% in terms of accuracy.
机译:自从发现3D传感器(例如Kinect相机),3D对象模型和点云以来,它在许多领域都得到了频繁使用。最重要的是机器人应用程序中的3D对象识别和分类。像人类视觉一样,这种类型的传感器可以通过组合几个单独的Kinect框架从视场甚至完整的3D对象模型生成对象模型。在这项工作中,我们提出了一种使用点云库(PCL)检测器和描述符以及深度置信网络(DBN)的基于特征学习的新对象分类方法。在开发分类方法之前,我们通过提议使用L2距离和识别阈值的新管线来评估3D描述符。为了获得最佳描述符,需要对不同的数据集计算3D描述符。随后,这些描述符用于学习使用DBN的分类方法中的鲁棒功能。我们在两个数据集上评估这些贡献的性能;华盛顿RGB-D和我们真实的3D对象数据集。结果表明,所提出的方法在准确性方面比先进方法高出约5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号