首页> 中文期刊> 《计算机应用文摘》 >基于轻量化GMNC-YOLO的苹果叶片病害检测方法

基于轻量化GMNC-YOLO的苹果叶片病害检测方法

     

摘要

针对苹果叶片病害识别中受人为主观因素影响大、传统卷积神经网络识别精度低、网络模型参数量过大等问题,文章提出了一种轻量化GMNC-YOLO检测算法对苹果叶片病害进行检测。该算法以YOLOv5s为基础模型,使用Ghost卷积进行特征提取,以实现网络轻量化;采用MobileOne模块替换Neck的C3模块,结合NAM与CBAM设计新的注意力机制模块NCB,以充分挖掘叶片图像中的信息,并提高模型检测精度。实验结果表明,相较于YOLOv5s,改进后的苹果叶片病害检测方法的平均精度提高了3.0%,参数量、FLOPs及权重文件大小分别降低约29.8%、32.5%和26.8%;与当前主流算法对比,GMNC-YOLO具有一定的先进性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号