首页> 中文期刊> 《应用数学与计算数学学报(英文)》 >随机时滞微分方程数值解的渐近均方有界性

随机时滞微分方程数值解的渐近均方有界性

     

摘要

主要研究数值方法能否再现随机时滞微分方程(stochastic delay differential equation,SDDE)解的渐近均方有界性.首先,探讨了使得方程的解均方有界的充分条件.同时,证明了在扩散项与漂移项系数均满足线性增长条件时,欧拉(Euler-Maruyama,EM)方法能够再现这一性质.然而,当减弱漂移项的条件时,EM方法不能再现有界性.为了解决这一问题,证明了后退欧拉(backward EM,BEM)法可以再现SDDE的渐近均方有界性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号