首页>
外文OA文献
>Mean-square and asymptotic stability of numerical methods for stochastic ordinary differential equations
【2h】
Mean-square and asymptotic stability of numerical methods for stochastic ordinary differential equations
展开▼
机译:随机常微分方程数值方法的均方和渐近稳定性
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
Stability analysis of numerical methods for ordinary differential equations (ODEs) is motivated by the question 'for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?' We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta method. We extend some mean-square stability results in [Saito and Mitsui, SIAM. J. Numer. Anal., 33 (1996), pp. 2254--2267]. In particular, we show that an extension of the deterministic A-stability property holds. We also plot mean-square stability regions for the case where the test equation has real parameters. For asymptotic stability, we show that the issue reduces to finding the expected value of a parametrized random variable. We combine analytical and numerical techniques to get insights into the stability properties. For a variant of the method that has been proposed in the literature we obtain precise analytic expressions for the asymptotic stability region. This allows us to prove a number of results. The technique introduced is widely applicable, and we use it to show that a fully implicit method suggested by [Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1992] has an asymptotic stability extension of the deterministic A-stability property. We also use the approach to explain some numerical results reported in [Milstein, Platen, and Schurz, SIAM J. Numer. Anal., 35 (1998), pp. 1010--1019.]
展开▼
机译:普通微分方程(ODE)数值方法的稳定性分析是由以下问题引起的:“数值方法重现了测试方程的特征是什么?我们研究带有乘性噪声项的线性测试方程,并考虑theta方法的随机版本的均方和渐近稳定性。我们扩展了[Saito and Mitsui,SIAM中的均方稳定性结果。 J.纽默Anal。,33(1996),pp.2254--2267]。特别是,我们证明了确定性A稳定性属性的扩展成立。对于测试方程具有实参的情况,我们还绘制了均方稳定区域。对于渐近稳定性,我们表明问题减少到找到参数化随机变量的期望值。我们将分析和数值技术相结合,以深入了解稳定性属性。对于文献中提出的方法的一种变体,我们获得了渐近稳定区域的精确解析表达式。这使我们可以证明许多结果。引入的技术广泛适用,并且我们使用它来证明[Kloeden and Platen,随机微分方程的数值解,Springer-Verlag,1992]建议的完全隐式方法具有确定性A稳定性的渐近稳定性扩展。 。我们还使用该方法来解释[Milstein,Platen和Schurz,SIAM J. Numer。 Anal。,35(1998),pp.1010--1019。]
展开▼