针对现有欠采样处理算法中存在样本缺少代表性、分类性能差等问题,提出了一种基于聚类欠采样的加权随机森林算法(weighted random forest algorithm based on clustering under-sampling,CUS-WRF).利用K-means算法对多数类样本聚类,引入欧氏距离作为欠采样时分配样本个数的权重依据,使采样后的多数类样本与少数类样本形成一个平衡的样本集,以CART决策树为基分类器,加权随机森林为整体框架,同时将测试样本的准确率作为每棵树的权值来完成对结果的最终投票,有效提高了整体分类性能.选择八组KEEL数据集进行实验,结果表明,与其余四种基于随机森林的不平衡数据处理算法相比,CUS-WRF算法的分类性能及稳定性更具优势.
展开▼