首页> 外文期刊>Journal of information and computational science >Density Weighted Region Growing Method for Imbalanced Data SVM Classification in Under-sampling Approaches
【24h】

Density Weighted Region Growing Method for Imbalanced Data SVM Classification in Under-sampling Approaches

机译:欠采样方法中不平衡数据支持向量机分类的密度加权区域增长法

获取原文
获取原文并翻译 | 示例

摘要

A density-weighted under-sampling method for SVM on imbalanced data is proposed. To reduce the size of majority group in training set, the region growing clustering method is employed to partition data into several clusters and the cluster centers are considered as the representatives of majority group. To initialize seeds of region growing, the density of each point in majority group is calculated first. The seeds then are randomly picked up and the probability of one point to be seed is in proportion with its corresponding density. The under-sampled training set is built by the minority group and the representatives of majority group. Experimental results on toy data and nature data show the priority of the proposed method comparing with Randomly under-sampling method and CNN.
机译:提出了一种不平衡数据支持向量机的密度加权欠采样方法。为了减少训练集中多数群体的规模,采用区域增长聚类方法将数据划分为多个聚类,以聚类中心为多数群体的代表。为了初始化区域生长的种子,首先计算多数组中每个点的密度。然后随机挑选种子,某一点成为种子的概率与其对应的密度成比例。欠采样培训集由少数群体和多数群体的代表建立。在玩具数据和自然数据上的实验结果表明,与随机欠采样方法和CNN相比,该方法具有更高的优先级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号