首页> 外文学位 >Electronic structure of defects in III-VI and II-VI semiconductors and novel ytterbium-based intermetallics.
【24h】

Electronic structure of defects in III-VI and II-VI semiconductors and novel ytterbium-based intermetallics.

机译:III-VI和II-VI半导体中的缺陷电子结构以及新型的-基金属间化合物。

获取原文
获取原文并翻译 | 示例

摘要

In recent years there has been a revival of interest in the III-VI family of semiconductors (GaS, GaSe, GaTe and InSe) due to their exciting nonlinear optical properties and their possible application in detector devices. These materials crystallize in layered crystal structure and their physical properties display a quasi two-dimensional character. An important characteristic of these systems is the existence of Ga-Ga (or In-In) dimers. It is well known that defects control the physical properties of semiconductors. In this thesis, we have carried out electronic structure calculations to study the nature of defect states in these materials. The defects we have studied include substitutional impurities at the cation and the anion sites as well as cationic and anionic vacancies. The failure of the hydrogenic effective mass approximation (EMA) to reproduce the experimental binding energies for the substitutional Cd and Sn defect states in GaSe, indicates the presence of large central cell corrections and the necessity of incorporating short range interactions in the calculation of defect binding energy. This has been done using a supercell model and self-consistent ab initio electronic structure method within density functional theory (DFT), which is known to be quite successful in tackling the problem of defects in semiconductors. Analyzing the defects from first-principles, we have been able to explain the detailed microscopic mechanism of the formation of Ga-site defects in GaSe and GaTe. When Ga is replaced by an impurity or when it is removed from the system to create a vacancy, the Ga dimer states can be strongly perturbed and this perturbation can give rise to defect states in the band gap.;Defect formation energy calculations, based on total energy differences between the pure and defect containing systems, can give valuable insight into the solubility of different impurities in a host compound. The formation energies of Ge and Sn impurities reveal that under Ga-rich growth conditions it is easier to incorporate Sn in GaTe, whereas in the Te-rich limit Ge becomes more soluble than Sn. This information can be used to reduce the large leakage current due to the presence of native acceptors (Ga vacancies) in GaSe and GaTe by Ge or Sn doping. Furthermore, the formation energy calculations provide information about the preferred location of an impurity inside the host lattice. Using this idea, we developed a model which explains the experimentally observed improvement in the mechanical properties of In doped GaSe. In p-type GaSe, In becomes positively charged and can occupy an interstitial site, improving drastically the shear rigidity of the layered material.;Using the same theoretical methods we have investigated the nature of H defects in CdTe. The formation energy calculations indicate that the ground state position of H inside the CdTe lattice depends on the charge state: the lowest energy positions for H0 and H+ is at the bond center site, while H- prefers the low electron density site surrounded by Cd cations. H in CdTe acts as an amphoteric impurity as expected. In the case of H on Cd site, the system undergoes Jahn-Teller distortion, due to the presence of a partially occupied degenerate t 2 state at the top of the VB. The symmetry of the system is lowered (the H atom moves closer to one of the four nearest neighbor Te atoms) and the t2 level is split by ∼74 meV at the Gamma-point.;In order to study the properties of strongly correlated systems, one has to go beyond the local density approximation (LDA)to the DFT and take into consideration the strong Coulomb interaction within the localized electronic shell. In this thesis we have used the LDA+U formalism to investigate the electronic, magnetic and structural properties of several Yb-base systems, which involve highly localized and strongly correlated f electrons. We find that the configuration of the f shell plays a crucial role in the physical properties of many Yb containing intermetallics.
机译:近年来,由于III-VI系列半导体(GaS,GaSe,GaTe和InSe)的令人兴奋的非线性光学特性及其在检测器设备中的可能应用,引起了人们的兴趣。这些材料以层状晶体结构结晶,并且它们的物理性质显示出准二维特征。这些系统的重要特征是存在Ga-Ga(或In-In)二聚体。众所周知,缺陷控制着半导体的物理性质。在本文中,我们进行了电子结构计算,以研究这些材料中缺陷状态的性质。我们研究的缺陷包括阳离子和阴离子位点的取代杂质以及阳离子和阴离子空位。氢有效质量近似(EMA)无法重现GaSe中Cd和Sn缺陷态的结合能的实验结合能,表明存在大量的中心细胞校正,并且在缺陷结合的计算中必须包含短程相互作用能源。这是通过使用超级单元模型和密度泛函理论(DFT)中的自洽从头开始电子结构方法完成的,众所周知,该方法在解决半导体缺陷问题方面非常成功。分析来自第一性原理的缺陷,我们已经能够解释在GaSe和GaTe中Ga部位缺陷形成的详细微观机理。当Ga被杂质取代或从系统中去除以产生空位时,Ga二聚体态可能会受到强烈干扰,这种干扰会导致带隙中出现缺陷态。纯体系和含缺陷体系之间的总能量差异可以提供有价值的洞察力,以了解不同杂质在主体化合物中的溶解度。 Ge和Sn杂质的形成能表明,在富Ga的生长条件下,在GaTe中掺入Sn更容易,而在富Te极限中,Ge比Sn更易溶。由于Ga或Sn掺杂在GaSe和GaTe中存在天然受体(Ga空位),因此该信息可用于减少大的漏电流。此外,形成能计算提供了有关主晶格内杂质优选位置的信息。利用这一思想,我们开发了一个模型,该模型解释了实验观察到的In掺杂GaSe力学性能的改善。在p型GaSe中,In变为带正电荷并占据间隙位置,从而极大地提高了层状材料的剪切刚度。使用相同的理论方法,我们研究了CdTe中H缺陷的性质。形成能的计算表明,H在CdTe晶格中的基态位置取决于电荷状态:H0和H +的最低能量位置在键中心,而H-则首选被Cd阳离子包围的低电子密度位。如预期的那样,CdTe中的H充当了两性杂质。对于C站点上的H,由于VB顶部存在部分占据的简并t 2状态,因此系统会发生Jahn-Teller失真。系统的对称性降低(H原子移近四个最近的Te原子之一),并且在Gamma点将t2能级划分为〜74 meV。;;为了研究强相关系统的性质,必须超越DFT的局部密度近似(LDA),并考虑到局部电子外壳内的强大库仑相互作用。在本文中,我们使用LDA + U形式论研究了几个Yb基系统的电子,磁性和结构性质,这些系统涉及高度局限且高度相关的f电子。我们发现,f壳的构型在许多含Yb的金属间化合物的物理性质中起着至关重要的作用。

著录项

  • 作者

    Rak, Zsolt.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号