首页> 外文学位 >Atherosclerotic Plaque Adhesion Strength and Its Role in Plaque Rupture
【24h】

Atherosclerotic Plaque Adhesion Strength and Its Role in Plaque Rupture

机译:动脉粥样硬化斑块的粘附强度及其在斑块破裂中的作用

获取原文
获取原文并翻译 | 示例

摘要

Cardiovascular diseases are disorders affecting the blood vessels and the heart. According to the World Health Organization, cardiovascular diseases are one of the leading causes of death worldwide. They are responsible for over 17.1 million deaths per year worldwide, representing 31.5% of deaths. Atherosclerosis, a chronic inflammatory disorder affecting large arteries, is the underlying cause of many cardiovascular diseases. Plaque rupture is a serious complication of advanced atherosclerosis, often leading to life-threatening clinical consequences such as myocardial infarction (heart attack) or stroke. 75% of newly developed myocardial infarction cases are caused by atherosclerotic plaque rupture. It affects approximately 1.1 million people in the USA per year, with a 40% fatality rate; 220,000 of these deaths occur without hospitalization. Over the past few decades, the mechanisms of atherosclerotic plaque progression and formation have been widely studied. However, due to the complexity of the process, plaque rupture mechanisms are still poorly understood.;In this thesis, a novel hypothesis regarding mechanisms of plaque rupture is proposed. Specifically, we hypothesize that the adhesive strength of the bond between the plaque and the vascular wall is an important determinant of atherosclerotic plaque stability (resistance to rupture). We also expect adhesive strength to be a function of plaque composition and extracellular matrix (ECM) organization at the plaque-media interface. This proposed mode of rupture is called delamination or plaque peeling.;Mouse plaque peeling experiments were very challenging and they needed time to be performed and validated. Thus, due to similarity of the experimental protocol, we used experimental data obtained on the dissection of human coronary artery specimens by Ying Wang, and we created a numerical model to apply the cohesive model technique to this problem. Arterial dissection is a rare but potentially fatal condition in which blood passes through the inner lining and between the layers of the arterial wall. It results in separation of the different layers, creating a false lumen in the process. The advantages to performing a primary study on arterial dissection were first to apply the cohesive zone models to a less complex problem than atherosclerosis.;The innovative technical approach to measure the adhesive strength developed previously, will be applied in this thesis to mice. It includes a micro-scale peel experiment protocol to measure adhesive strength of mouse atherosclerotic plaques during delamination from the underlying vessel wall. Our team at USC, as far as we know, was the first to perform these types of measurements on mice. The use of mice in our experiments presents the advantage that the extracellular matrix composition could be systematically changed using transgenic strains, altered diet, or drug treatments. Different mouse strains or models could then be used and the mechanical properties will be studied on each type.;Another innovation of our work will involve application of a cohesive zone model to describe delamination behavior of atherosclerotic plaques under a range of physiological and pathophysiological conditions, using a 2D numerical model. While the cohesive zone approach has been widely used to model fracture mechanics in classic engineering materials, it was rarely applied to describe failure of atherosclerotic plaques. The study of plaque delamination by Leng et al. 2015 was designated to test the use of cohesive zone by implementing a specific traction separation law, assuming the parameter values of the behavior laws of the plaque and the cohesive zone using values by literature. Innovation in our approach is to use a simple traction separation law to study the behavior of plaques and identifying their properties. Experimental results of delamination of the plaques were used in the definition of traction-separation laws of the cohesive zone.
机译:心血管疾病是影响血管和心脏的疾病。根据世界卫生组织,心血管疾病是全世界主要的死亡原因之一。他们每年在世界范围内造成超过1,710万人死亡,占死亡人数的31.5%。动脉粥样硬化是一种影响大动脉的慢性炎性疾病,是许多心血管疾病的根本原因。斑块破裂是晚期动脉粥样硬化的严重并发症,通常导致危及生命的临床后果,例如心肌梗塞(心脏病发作)或中风。 75%的新发心肌梗死病例是由动脉粥样硬化斑块破裂引起的。在美国,它每年影响约110万人,死亡率为40%;其中220,000例死亡没有住院。在过去的几十年中,对动脉粥样硬化斑块发展和形成的机制进行了广泛的研究。然而,由于该过程的复杂性,对斑块破裂的机制仍知之甚少。本文提出了一种关于斑块破裂机制的新假说。具体来说,我们假设斑块与血管壁之间的结合力的粘合强度是动脉粥样硬化斑块稳定性(抗破裂性)的重要决定因素。我们还期望粘附强度是斑块-介质界面处斑块组成和细胞外基质(ECM)组织的函数。提出的这种破裂模式称为分层或斑块剥落。小鼠斑块剥落实验非常具有挑战性,需要时间来进行和验证。因此,由于实验方案的相似性,我们使用了由王颖对人冠状动脉标本进行解剖所获得的实验数据,并创建了一个数值模型以将内聚模型技术应用于该问题。动脉夹层是一种罕见的但可能致命的疾病,其中血液穿过内壁和动脉壁各层之间。它导致不同层的分离,从而在过程中产生假的管腔。对动脉夹层进行初步研究的优势是,首先将粘着区模型应用于比动脉粥样硬化更不复杂的问题。;之前开发的用于测量粘着强度的创新技术方法将在本文中应用于小鼠。它包括一个微型剥离实验规程,可在从下层血管壁分层时测量小鼠动脉粥样硬化斑块的粘附强度。据我们所知,USC的团队是第一个对小鼠进行此类测量的团队。在我们的实验中使用小鼠具有以下优势:可以使用转基因菌株,改变饮食或药物治疗来系统地改变细胞外基质的组成。然后可以使用不同的小鼠品系或模型,并对每种类型的机械性能进行研究。;我们工作的另一项创新将涉及应用内聚区模型来描述在一系列生理和病理生理条件下动脉粥样硬化斑块的分层行为,使用2D数值模型。虽然粘聚区方法已被广泛用于经典工程材料中的断裂力学建模,但很少用于描述动脉粥样硬化斑块的破坏。 Leng等人对斑块分层的研究。 2015年被指定通过实施特定的牵引力分离法来测试内聚区的使用,并假设使用文献中的值假设菌斑和内聚区的行为规律的参数值。我们方法的创新在于使用简单的牵引分离定律来研究斑块的行为并确定其特性。斑块分层的实验结果被用于定义粘性区域的牵引分离规律。

著录项

  • 作者

    Merei, Bilal.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Biomechanics.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号