首页> 外文学位 >Analyse de groupe d'un modele de la plasticite ideale planaire et sur les solutions en termes d'invariants de Riemann pour les systemes quasilineaires du premier ordre.
【24h】

Analyse de groupe d'un modele de la plasticite ideale planaire et sur les solutions en termes d'invariants de Riemann pour les systemes quasilineaires du premier ordre.

机译:一阶拟线性系统的理想平面可塑性模型和解的黎曼不变量组分析。

获取原文
获取原文并翻译 | 示例

摘要

The objects under consideration in this thesis are systems of first-order quasilinear equations. In the first part of the thesis, a study is made of an ideal plasticity model from the point of view of the classical Lie point symmetry group. Planar flows are investigated in both the stationary and non-stationary cases. Two new vector fields are obtained. They complete the Lie algebra of the stationary case, and the subalgebras are classified into conjugacy classes under the action of the group. In the non-stationary case, a classification of the Lie algebras admissible under the chosen force is performed. For each type of force, the vector fields are presented. For monogenic forces, the algebra is of the highest possible dimension. Its classification into conjugacy classes is made. The symmetry reduction method is used to obtain explicit and implicit solutions of several types. Some of them can be expressed in terms of one or two arbitrary functions of one variable. Others can be expressed in terms of Jacobi elliptic functions. Many solutions are interpreted physically in order to determine the shape of realistic extrusion dies. In the second part of the thesis, we examine solutions expressed in terms of Riemann invariants for first-order quasilinear systems. The generalized method of characteristics, along with a method based on conditional symmetries for Riemann invariants are extended so as to be applicable to systems in their elliptic regions. The applicability of the methods is illustrated by examples such as non-stationary ideal plasticity for an irrotational flow as well as fluid mechanics equations. A new approach is developed, based on the introduction of rotation matrices which satisfy certain algebraic conditions. It is directly applicable to non-homogeneous and non-autonomous systems. Its efficiency is illustrated by examples which include a system governing the non-linear superposition of waves and particles. The general solution is constructed in explicit form.
机译:本文考虑的对象是一阶拟线性方程组。在论文的第一部分,从经典的李点对称群的观点出发,对理想的可塑性模型进行了研究。在固定和非固定情况下都研究了平面流动。获得两个新的矢量场。他们完成了平稳情况的李代数,子代在小组的作用下被分类为共轭类。在非平稳情况下,对在选定力下可容许的李代数进行分类。对于每种力,都会显示矢量场。对于单基因力,代数具有最大可能的维数。将其分类为共轭类。对称性减少方法用于获得几种类型的显式和隐式解。其中一些可以用一个变量的一个或两个任意函数来表示。其他可以用Jacobi椭圆函数表示。为了确定实际挤出模具的形状,需要对物理方法进行多种解释。在论文的第二部分中,我们研究了一阶拟线性系统的黎曼不变量表示的解。扩展了通用的特征方法以及基于黎曼不变量的基于条件对称性的方法,以适用于其椭圆区域中的系统。通过示例举例说明了这些方法的适用性,例如非静态理想非塑性流动以及流体力学方程。在引入满足某些代数条件的旋转矩阵的基础上,开发了一种新方法。它直接适用于非同质和非自治系统。通过示例说明了其效率,这些示例包括一个控制波和粒子的非线性叠加的系统。通用解决方案以显式形式构造。

著录项

  • 作者

    Lamothe, Vincent.;

  • 作者单位

    Universite de Montreal (Canada).;

  • 授予单位 Universite de Montreal (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 肿瘤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号