首页> 外文学位 >Investigation of PM Formation and Evolution in Plumes Emitted by Heavy-Duty Diesel Vehicles: Wind Tunnel Study.
【24h】

Investigation of PM Formation and Evolution in Plumes Emitted by Heavy-Duty Diesel Vehicles: Wind Tunnel Study.

机译:重型柴油车尾气中PM的形成和演变研究:风洞研究。

获取原文
获取原文并翻译 | 示例

摘要

Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. Studies that have led to these technological advancements were made in controlled laboratory environments and are not representative of real-world emissions from these engines or vehicles. In addition, formation and evolution of PM from these engines are extremely sensitive to overall changes in the dilution process. In light of this, the study of the exhaust plume of a heavy-duty diesel vehicle operated inside a subsonic environmental wind tunnel can give us an idea of the dilution process and the representative emissions of the real-world scenario. The wind tunnel used for this study is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. It was specifically designed and built by West Virginia University (WVU) to characterize the exhaust plume emitted from heavy-duty vehicles. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5mm. The investigation involves three different heavy-duty Class-8 diesel vehicles equipped with aftertreatment technologies, representative of legacy and modern truck fleets in the USA. The three vehicles investigated are representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the respective vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cooling and dilution of the exhaust takes place within 2m from the exhaust stack. The rate of cooling and dilution are greatest in early stages of the dilution process (within 0.15m from the exhaust stack) for the areas with high turbulence intensity (TI), where strong mixing phenomena occurs and the nucleation mode of the PM is formed. On the other hand, the core of the plume observes a slower cooling and dilution rate. This difference is reflected in the PM formation and evolution of these two distinct regions, as shown by the particle size distributions and number concentrations. Eventually, further downstream those heterogeneous areas due to the turbulence mix together to form a homogenous particle size distribution across the entire plume. The content of PM volatile and solid compound in the exhaust set the condition for the nucleation to occur, but the TI has the active role to generate nanoparticles. Using MARS as modeling tool of the plume enhanced the obtained notions, confirming the initial heterogeneity of the plume, further becoming homogenous. In addition, providing further detail of early stages of the plumes showing that a DPF-equipped truck generates a nucleation mode quickly adsorbed by the background PM (0.15m from the exhaust stack).
机译:严格的排放法规迫使柴油后处理系统进行了巨大的技术改进,尤其是在减少颗粒物(PM)排放方面。导致这些技术进步的研究是在受控实验室环境中进行的,并不代表这些引擎或车辆在现实世界中的排放。此外,这些引擎中PM的形成和演变对稀释过程中的整体变化极为敏感。有鉴于此,对亚音速环境风洞内运行的重型柴油车辆的排气羽流的研究可以使我们对稀释过程和实际场景中的代表性排放物有一个了解。这项研究使用的风洞能够容纳一辆大型卡车,风速超过50mph。它是由西弗吉尼亚大学(WVU)专门设计和制造的,用于表征重型车辆排放的废气羽流。三维龙门系统允许跨越羽流中的测试区域和样本区域,精度小于5mm。调查涉及三种不同的配备后处理技术的重型8类柴油车辆,这些车辆代表了美国的传统和现代卡车车队。所研究的三种车辆分别代表了三种排放法规标准,即分别符合US-EPA 2007和US-EPA 2010,以及不具有US-EPA 2007之前的任何后处理技术的基准车辆。测试程序包括三种不同的车速:怠速,20mph和35mph。车辆在WVU的中型底盘测功机上进行了测试,施加​​在卡车上的负载反映了相应车辆测试速度下的道路负载方程。在整个测试过程中,风洞的风速和车速保持彼此接近。结果表明,排气的冷却和稀释发生在距排气烟囱2m的范围内。对于湍流强度高(TI)的区域,在稀释过程的早期阶段(距排气烟囱0.15m以内),冷却和稀释的速率最大,这些区域会发生强烈的混合现象并形成PM的成核模式。另一方面,羽状芯的冷却和稀释速率较慢。这种差异反映在这两个不同区域的PM形成和演变中,如粒径分布和数量浓度所显示。最终,由于湍流,那些异质区域进一步向下游混合在一起,从而在整个羽流中形成均匀的粒径分布。排气中PM挥发性和固体化合物的含量为发生成核作用奠定了条件,但TI具有产生纳米颗粒的积极作用。使用MARS作为羽流的建模工具,可以增强获得的概念,从而确认羽流的初始异质性,进而变得同质。此外,提供羽状流早期的更多详细信息,表明配备DPF的卡车会迅速产生一种成核模式,该成核模式会被本底PM(距排气烟囱0.15m)迅速吸收。

著录项

  • 作者

    Littera, Daniele.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Mechanical.;Engineering Automotive.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号