首页> 外文学位 >Optimizing a System of Electric Vehicle Charging Stations
【24h】

Optimizing a System of Electric Vehicle Charging Stations

机译:电动汽车充电站系统的优化

获取原文
获取原文并翻译 | 示例

摘要

There has been a significant increase in the number of electric vehicles (EVs) mainly because of the need to have a greener living. Thus, ease of access to charging facilities is a prerequisite for large scale deployment for EV.;The first component of this dissertation research seeks to formulate a deterministic mixed-integer linear programming (MILP) model to optimize the system of EV charging stations, the locations of the stations and the number of slots to be opened to maximize the profit based on the user-specified cost of opening a station. Despite giving the optimal solution, the drawback of MILP formulation is its extremely high computational time (as much as 5 days). The other limit of this deterministic model is that it does not take uncertainty in to consideration.;The second component of this dissertation is to overcome the first drawback of the MILP model by implementing a two-stage framework developed by (Chawal et al. 2018), which integrates the first-stage system design problem and second-stage control problem of an EV charging stations using a design and analysis of computer experiments (DACE) based system design optimization approach. The first stage specifies the design of the system that maximizes expected profit. Profit incorporates costs for building stations and revenue evaluated by solving a system control problem in the second stage. The results obtained from the DACE based system design optimization approach, when compared to the MILP, provide near optimal solutions. Moreover, the computation time with the DACE approach is significantly lower, making it a more suitable option for practical use.;The third component of this dissertation is to overcome the second drawback of the MILP model by introducing stochasticity in our model. A two-stage framework is developed to address the design of a system of electric vehicle (EV) charging stations. The first stage specifies the design of the system that maximizes expected profit. Profit incorporates costs for building stations and revenue evaluated by solving a system control problem in the second stage. The control problem is formulated as an infinite horizon, continuous-state stochastic dynamic programming problem. To reduce computational demands, a numerical solution is obtained using approximate dynamic programming (ADP) to approximate the optimal value function. To obtain a system design solution using our two-stage framework, we propose an approach based on DACE. DACE is employed in two ways. First, for the control problem, a DACE-based ADP method for continuous-state spaces is used. Second, we introduce a new DACE approach specifically for our two-stage EV charging stations system design problem. This second version of DACE is the focus of this paper. The "design" part of the DACE approach uses experimental design to organize a set of feasible first-stage system designs. For each of these system designs, the second-stage control problem is executed, and the corresponding expected revenue is obtained. The "analysis" part of the DACE approach uses the expected revenue data to build a metamodel that approximates the expected revenue as a function of the first-stage system design. Finally, this expected revenue approximation is employed in the profit objective of the first stage to enable a more computationally-efficient method to optimize the system design. To our knowledge, this is the only two-stage stochastic problem which uses infinite horizon dynamic programming approach to optimize the second stage dynamic control problem and the first stage system design problem. Moreover, when the designs obtained from our DACE approach and MILP design are solved using DACE-based ADP method (simulation), an improvement of approximately 8% is observed in the simulated profit obtained from ADP design compared to that of MILP design indicating that when uncertainty is considered, DACE ADP design provides the better solution.
机译:电动汽车(EV)的数量已显着增加,这主要是因为需要更加绿色的生活。因此,易于使用充电设施是电动汽车大规模部署的先决条件。本研究的第一部分旨在建立确定性的混合整数线性规划(MILP)模型,以优化电动汽车充电站的系统。站点的位置以及要打开的插槽数,以根据用户指定的站点开放成本最大化利润。尽管给出了最佳解决方案,但MILP公式的缺点是计算时间极长(多达5天)。该确定性模型的另一个局限性在于它没有考虑不确定性;本论文的第二部分是通过实现由(Chawal等人,2018年开发的一个两阶段框架来克服MILP模型的第一个缺点。 ),它使用基于计算机实验和设计的分析(DACE)的系统设计优化方法集成了EV充电站的第一阶段系统设计问题和第二阶段控制问题。第一阶段指定最大化期望利润的系统设计。利润包含了建筑站的成本和通过解决第二阶段的系统控制问题而评估的收入。与MILP相比,从基于DACE的系统设计优化方法获得的结果提供了近乎最佳的解决方案。而且,使用DACE方法的计算时间大大缩短,使其成为更适合实际使用的选择。本论文的第三部分是通过在模型中引入随机性来克服MILP模型的第二个缺点。开发了一个两阶段的框架来解决电动汽车(EV)充电站系统的设计问题。第一阶段指定最大化期望利润的系统设计。利润包含了建筑站的成本和通过解决第二阶段的系统控制问题而评估的收入。将控制问题表述为无限水平连续状态随机动态规划问题。为了减少计算需求,使用近似动态编程(ADP)来近似最佳值函数,从而获得数值解。为了使用我们的两阶段框架获得系统设计解决方案,我们提出了一种基于DACE的方法。 DACE有两种使用方式。首先,对于控制问题,使用用于连续状态空间的基于DACE的ADP方法。其次,我们针对两阶段EV充电站系统设计问题引入了一种新的DACE方法。 DACE的第二个版本是本文的重点。 DACE方法的“设计”部分使用实验设计来组织一组可行的第一阶段系统设计。对于这些系统设计中的每一个,都将执行第二阶段控制问题,并获得相应的预期收益。 DACE方法的“分析”部分使用预期收入数据来构建一个元模型,该模型将预期收入作为第一阶段系统设计的函数进行近似。最后,在第一阶段的利润目标中采用了这种预期的收入近似值,以实现一种计算效率更高的方法来优化系统设计。据我们所知,这是唯一的使用无级水平动态规划方法来优化第二阶段动态控制问题和第一阶段系统设计问题的两阶段随机问题。此外,当使用基于DACE的ADP方法(模拟)解决了从我们的DACE方法获得的设计和MILP设计所获得的设计时,与MILP设计相比,从ADP设计获得的模拟利润中可观察到大约8%的改善。考虑到不确定性,DACE ADP设计提供了更好的解决方案。

著录项

  • 作者

    Chawal, Ukesh.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Industrial engineering.;Operations research.;Statistics.
  • 学位 Ph.D.I.E.
  • 年度 2018
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号