首页> 外文学位 >Phonon thermal transport at the nanoscale.
【24h】

Phonon thermal transport at the nanoscale.

机译:声子在纳米尺度上的热传输。

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive description of how heat and temperature evolve on nanometer to submicron length-scales does not yet exist because of gaps in our fundamental understanding of interfacial thermal transport and nondiffusive thermal transport. In this dissertation, I address these gaps in fundamental understanding.;Interfaces often dominate the thermal response in nanoscale systems. However, a microscopic description of how heat is transported across crystal boundaries remains elusive. I present time-domain thermoreflectance (TDTR) experiments that improve our fundamental understanding of interfacial thermal transport. I show that, for clean interfaces between the two crystals, G derived from TDTR data usually lies in the range 0.25 Gmax < G < 0.7G max, where Gmax is the maximum possible conductance predicted by simple theory. Notable exceptions are Al/Si 0.99Ge0.01, and Al/Si0.2Ge0.8, where G < 0.25Gmax. Analyzing TDTR data of Al/SiGe alloys with either a two-channel diffusive model or a two-channel ballistic/diffusive model explains the unusually low thermal conductances. Both models predict a significant reduction in the effective thermal conductivity of semiconductor alloys near an interface as a result of disparate heat flux boundary conditions for different groups of phonons in combination with weak coupling between different groups of phonons in the near interface region of the crystal.;While it is well established that Fourier theory can break down in nanoscale thermal transport problems, various theories for how and why Fourier theory breaks down do not adequately describe existing experiments. I characterize the relationship between the failure of Fourier theory, phonon mean-free-paths, important length-scales of the temperature-profile, and interfacial-phonon scattering by TDTR experiments on nonmetallic crystals. When crystals are heated by a laser with a radius of less than two microns, Fourier theory overpredicts the materials ability to carry heat away from the heated region. The presence of the interface and the anisotropy of the temperature-profile results in an effective thermal conductivity tensor that is anisotropic.
机译:由于我们对界面热传递和非扩散性热传递的基本理解存在差距,因此尚无关于热和温度如何在纳米级至亚微米级长度尺度上发展的全面描述。在这篇论文中,我在基本的理解上解决了这些空白。接口通常主导着纳米系统的热响应。然而,如何通过晶体边界传输热量的微观描述仍然难以捉摸。我提出了时域热反射(TDTR)实验,该实验提高了我们对界面热传输的基本理解。我表明,对于两个晶体之间的清洁界面,从TDTR数据得出的G通常在0.25 Gmax

著录项

  • 作者

    Wilson, Richard Brian.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号