首页> 外文学位 >Pulmonary nodules on CT: Machine learning for the development and assessment of image features related to malignancy status.
【24h】

Pulmonary nodules on CT: Machine learning for the development and assessment of image features related to malignancy status.

机译:CT上的肺结节:机器学习,用于开发和评估与恶性状态有关的图像特征。

获取原文
获取原文并翻译 | 示例

摘要

Lung cancer is the second most common cancer in the United States and it is the primary cause of cancer related death. Prognosis for the patient is greatly affected by the stage at diagnosis. Often, the first sign of primary lung cancer is the solitary pulmonary nodule (SPN), but in order to deliver appropriate treatment, the nodule must be efficiently detected and characterized.;Machine learning provides high-volume, high dimension pattern recognition with powerful statistical machinery to assess the usefulness of features. By exploiting these qualities, image features can be evaluated in a novel fashion.;In this report, we investigate machine learning approaches for the development and assessment of image features with applicability to malignancy status of pulmonary nodules on computed tomography with the following aims: (1) Develop a set of candidate image features related to morphology, attenuation, and enhancement; (2) Assess the effect of image resolution on classification performance and feature emphasis; (3) Assess the performance of classifiers developed from (1) and (2) on images commonly acquired in clinical practice. My hypotheses are: there are novel quantitative features important to nodule classification as benign or malignant; and features that correlate to descriptors used by radiologists are also important to nodule classification.
机译:肺癌是美国第二大最常见的癌症,是与癌症相关的死亡的主要原因。诊断的阶段极大地影响了患者的预后。通常,原发性肺癌的第一个征兆是孤立性肺结节(SPN),但为了进行适当的治疗,必须有效地检测和表征结节。机器学习提供了强大的统计量,可进行大批量,高维度的模式识别评估功能有用性的机制。通过利用这些品质,可以以新颖的方式评估图像特征。;在本报告中,我们研究了机器学习方法以开发和评估图像特征,并适用于计算机断层摄影术中的肺结节的恶性状态,其目的如下: 1)开发一组与形态,衰减和增强有关的候选图像特征; (2)评估图像分辨率对分类性能和特征强调的影响; (3)评估从(1)和(2)开发的分类器在临床实践中通常获得的图像上的性能。我的假设是:对于结节的分类,良性或恶性有重要的新的定量特征;与放射科医生使用的描述词相关的特征对于结核分类也很重要。

著录项

  • 作者

    Byrd, Ashlee Michelle.;

  • 作者单位

    College of Medicine - Mayo Clinic.;

  • 授予单位 College of Medicine - Mayo Clinic.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号