首页> 外文学位 >Simulation of indium antimonide devices using drift-diffusion equations.
【24h】

Simulation of indium antimonide devices using drift-diffusion equations.

机译:使用漂移扩散方程模拟锑化铟装置。

获取原文
获取原文并翻译 | 示例

摘要

Silicon technology has for several decades followed Moore's law. Reduction of feature dimensions has resulted in constant increase in device density which has enabled increased functionality. Simultaneously, performance, such as circuit speed, has been improving. Recently, this trend is in jeopardy due to, for example, unsustainable increase in the processor power dissipation. In order to continue development trends, as outlined in ITRS roadmap, new approaches seem to be required once feature size reaches 10--20 nm range.;This research focuses on using III-V compounds, specifically indium-antimonide (InSb), to supplement silicon CMOS technology. Due to its low bandgap and high mobility, InSb shows promise as a material for extremely high frequency active devices operating at very low voltages. In this research electrical properties of InSb material are characterized and modeled with special emphasis on recombination-generation mechanisms. Device simulators based on drift-diffusion approach -- DESSIS and nanoMOS -- are modified for InSb MOSFET design and analysis. To assess the quality of InSb MOSFET designs several figures of merit are utilized: Ion/Ioff ratio, I-V characteristics, threshold voltage, drain induced barrier lowering (DIBL) and unity current gain frequency for different configurations and gate lengths. It is shown that significant performance improvement can be achieved in InSb MOSFETs through proper scaling. For example, extrapolated cutoff frequencies reach into THz range. Semi-empirical scaling rules that remedy short channel effects are proposed. Finally, quantum mechanical (QM) effects in InSb MOSFET and their effect on device performance are examined using nanoMOS device simulation program. It is found that nonparabolicity has to be properly modeled and that QM effects have a large effect on threshold voltage and transconductance and should be included when analyzing and designing deca-nanometer size InSb MOSFETs.
机译:硅技术几十年来一直遵循摩尔定律。减小特征尺寸导致了设备密度的不断增加,从而增加了功能。同时,诸如电路速度的性能也在提高。最近,由于例如处理器功耗的不可持续的增加,这种趋势处于危险之中。为了延续ITRS路线图中概述的发展趋势,一旦特征尺寸达到10--20 nm范围,似乎就需要新的方法。该研究的重点是使用III-V化合物,特别是锑化铟(InSb)补充硅CMOS技术。由于其低的带隙和高的迁移率,InSb有望作为在非常低的电压下工作的极高频有源器件的材料。在这项研究中,对InSb材料的电性能进行了表征和建模,并特别强调了重组生成机理。改进了基于漂移扩散方法的器件仿真器(DESSIS和nanoMOS),用于InSb MOSFET设计和分析。为了评估InSb MOSFET设计的质量,使用了几个指标:离子/ Ioff比,I-V特性,阈值电压,漏极引起的势垒降低(DIBL)和不同配置和栅极长度的单位电流增益频率。结果表明,通过适当的缩放比例,InSb MOSFET可以显着提高性能。例如,外推的截止频率达到THz范围。提出了补救短信道效应的半经验缩放规则。最后,使用nanoMOS器件仿真程序检查了InSb MOSFET中的量子力学(QM)效应及其对器件性能的影响。发现必须对非抛物线进行正确建模,并且QM效应对阈值电压和跨导有很大影响,在分析和设计十纳米尺寸的InSb MOSFET时应将其包括在内。

著录项

  • 作者

    Sijercic, Edin.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号