首页> 外文学位 >Bitterness of soy protein hydrolysates according to molecular weight of peptides.
【24h】

Bitterness of soy protein hydrolysates according to molecular weight of peptides.

机译:大豆蛋白水解物的苦味取决于肽的分子量。

获取原文
获取原文并翻译 | 示例

摘要

The bitterness in soy protein hydrolysates is a major obstacle to acceptance of soy products by consumers. The primary objective of this research was to evaluate the bitterness of 4 different molecular weight peptide fractions obtained from Protex 7L-treated soy hydrolysate. First, a theoretical analysis was performed to predict hydrolytic cleavage points of 3 different bitter- and non-bitter-producing proteases on soy protein at 4% degree of hydrolysis (DH) and hypothesize how peptide size influences bitterness. Protex 7L-treated soy hydrolysate was fractionated by gel filtration, desalinated by ultra-filtration, freeze-dried, and re-diluted to 5% w/v in Milli-Q water for sensory evaluation. Molecular weight of the fractions was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Panelists' sensitivity to Multifect Neutral (MN)-treated soy hydrolysate was compared to caffeine, quinine, leucine, and phenylalanine. Panelists' perceptions of the bitterness of MN-treated soy hydrolysate were compared to the bitterness of leucine and phenylalanine free amino acids. Panelists were screened for bitterness sensitivity and 15 highly sensitive panelists were selected to evaluate the Protex 7L-treated soy hydrolysate fractions, MN-treated soy hydrolysate, caffeine, quinine, leucine, and phenylalanine by using a modified triangle test. Comparison of panelist sensitivity was evaluated by Cohen's kappa coefficient and Fisher's exact test (p ≤ 0.05). Comparison of bitterness was analyzed by Cohen's kappa coefficient and McNemar's test (p ≤ 0.05).;A fraction consisting of low molecular weight peptides (estimated 1-5 kDa) was identified as bitter (p = 0.009) as well as the unfractionated hydrolysate (p = 0.088). The remaining 3 fractions (2 larger MW and one 1 kDa) were not bitter. Panelists selected for bitterness sensitivity had an average threshold of 0.98 mM for caffeine, 8.9 muM for quinine, 5.3 mM for leucine, 3.4 mM for phenylalanine, and 5.2 g/100 mL for MN-treated soy hydrolysate. The kappa coefficient showed poor agreement between panelist sensitivity to soy hydrolysate in relation to caffeine, quinine, and phenylalanine, and fair agreement in relation to leucine. Fisher's exact test showed a non-significant p value for panelist sensitivity to soy hydrolysate in relation to caffeine, quinine, leucine, and phenylalanine, indicating that panelist sensitivity to soy hydrolysate was independent of panelist sensitivity to caffeine, quinine, leucine, and phenylalanine. While all panelists identified caffeine and quinine as bitter, 41%, 62%, and 86% identified leucine, phenylalanine, and soy hydrolysate as bitter, respectively. In both bitter perception relationships to MN-treated soy hydrolysate, leucine and phenylalanine showed poor agreement by the kappa coefficient and significance by McNemar's test, indicating that the bitterness in leucine and phenylalanine is different than the bitterness in soy hydrolysate. This suggests that free hydrophobic amino acids such as leucine and phenylalanine are not responsible for the bitterness of soy protein hydrolysate. In bitterness sensory studies of soy hydrolysate, neither leucine nor phenylalanine is recommended for panelist training. Although caffeine and quinine are recognized standards for bitterness, small peptides may be a better standard to use in bitterness training for soy hydrolysates.;Several factors are likely to be the cause for bitterness in protein hydrolysates. The hydrophobicity, primary sequence, spatial structure, molecular weight, and bulkiness of peptides tend to be inter-related and a combination of these factors is most likely responsible for bitterness. However, these bitterness models do not explain why certain proteases do not produce bitter hydrolysates. Further research on the bitterness of protein hydrolysates coupled with valid sensory analysis is still needed.
机译:大豆蛋白水解物中的苦味是消费者接受大豆产品的主要障碍。这项研究的主要目的是评估从Protex 7L处理过的大豆水解物中获得的4种不同分子量的肽馏分的苦味。首先,进行了理论分析,以预测在4%的水解度(DH)下大豆蛋白上3种不同的产生苦味和不苦味的蛋白酶的水解裂解点,并假设肽大小如何影响苦味。经凝胶过滤将Protex 7L处理过的大豆水解物分馏,通过超滤脱盐,冷冻干燥,然后在Milli-Q水中重新稀释至5%w / v,以进行感官评估。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析级分的分子量。小组成员对经多效中性(MN)处理的大豆水解产物的敏感性与咖啡因,奎宁,亮氨酸和苯丙氨酸进行了比较。小组成员将MN处理过的大豆水解产物的苦味与亮氨酸和苯丙氨酸游离氨基酸的苦味进行了比较。筛选小组成员对苦味的敏感性,并选择15位高度敏感的小组成员,通过改良的三角形试验评估Protex 7L处理的大豆水解产物级分,MN处理的大豆水解产物,咖啡因,奎宁,亮氨酸和苯丙氨酸。通过科恩的卡伯系数和费舍尔精确检验(p≤0.05)评估专门小组成员的敏感性。通过Cohen的kappa系数和McNemar检验(p≤0.05)分析了苦味的比较。由低分子量肽(估计为1-5 kDa)组成的馏分被鉴定为苦味(p = 0.009)以及未分离的水解物( p = 0.088)。其余3个馏分(2个较大的MW和1个<1 kDa)不苦。被选定为具有苦味敏感性的小组成员的平均阈值为:咖啡因为0.98 mM,奎宁为8.9μM,亮氨酸为5.3 mM,苯丙氨酸为3.4 mM,MN处理过的大豆水解物的平均阈值为5.2 g / 100 mL。卡伯系数显示,小组成员对大豆水解物的咖啡因,奎宁和苯丙氨酸的敏感性与对亮氨酸的一致性较差。 Fisher的精确测试表明,小组成员对大豆水解产物相对于咖啡因,奎宁,亮氨酸和苯丙氨酸的敏感性的p值无显着性,表明小组成员对大豆水解产物的敏感性独立于小组成员对咖啡因,奎宁,亮氨酸和苯丙氨酸的敏感性。虽然所有小组成员均将咖啡因和奎宁视为苦味,但分别有41%,62%和86%的人将亮氨酸,苯丙氨酸和大豆水解物视为苦味。在与MN处理过的大豆水解物的苦味感知关系中,亮氨酸和苯丙氨酸的卡伯系数和McNemar检验的显着性均较差,表明亮氨酸和苯丙氨酸的苦味与大豆水解物的苦味不同。这表明游离疏水性氨基酸(如亮氨酸和苯丙氨酸)与大豆蛋白水解产物的苦味无关。在大豆水解物的苦味感官研究中,不建议将亮氨酸或苯丙氨酸用于专家小组培训。尽管咖啡因和奎宁是公认的苦味标准,但小肽可能是用于大豆水解物苦味训练的更好标准。;几个因素很可能是导致蛋白水解物苦味的原因。肽的疏水性,一级序列,空间结构,分子量和体积往往相互关联,并且这些因素的组合很可能是造成苦味的原因。但是,这些苦味模型不能解释为什么某些蛋白酶不产生苦味水解产物。蛋白质水解产物的苦味与有效的感官分析相结合,仍需进一步研究。

著录项

  • 作者

    Geisenhoff, Heidi.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Agriculture Food Science and Technology.
  • 学位 M.S.
  • 年度 2009
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号