首页> 外文学位 >New physical models and design approaches for gate turn-off thyristors.
【24h】

New physical models and design approaches for gate turn-off thyristors.

机译:栅极关断晶闸管的新物理模型和设计方法。

获取原文
获取原文并翻译 | 示例

摘要

The gate turn-off thyristor (GTO) is the only power semiconductor, with self turn-off capability, that can be used for switching voltages above 2 kV, or currents above 1500 A. In spite of being in existence for the past three decades, it remains a very poorly understood device, mainly due to the complexity of the turn-off process, and its potential largely unexploited. As an important step toward better design of these devices, it is essential to understand the dependence of the various modes of operation on the physical parameters and dimensions. In our physical modeling work, we have tried to raise the general level of understanding by developing new physical analytical models for the on-state and the turn-off mechanisms from first principles, and design considerations to link the blocking capability with steady state dissipation. No fitting parameter was used in any of the analyses.; Our turn-off model, originating in the current continuity equations, characterized the squeezing of minority carrier plasma, addressed the physical basis for a minimum "on" region dimension (typically 25 {dollar}mu{dollar}m), and predicted, for the first time, the dependence of storage time on the anode and gate currents, device dimensions and physical parameters. The predictions are in good agreement with our experiments at G.E., Malvern, and are also corroborated by measurements of other workers that were unexplained before our work.; A new physical model was also developed to analyze the temperature dependent steady on-state mode of operation. It includes Auger and SRH recombination, the dependence of the carrier mobilities on temperature and injection level, and the effect of device geometry. Experimental current-voltage characteristics for anode currents upto 3000 A, obtained from G.E. devices at 25{dollar}spcirc{dollar}C and 115{dollar}spcirc{dollar}C, corresponded closely with the theoretical predictions.; Also, design procedures were developed, for the first time, to demonstrate the overall superiority of the GTO with a two layered n base over the conventional pnpn structure (A blocking capability of 8000 V requires 1100 {dollar}mu{dollar}m of n base for the latter while only about 780 {dollar}mu{dollar}m for the former). Our design calculations linked the forward blocking and on-state characteristics of each device in terms of their dimensions, doping densities and basic physical parameters. Best blocking voltage versus on-state voltage characteristics were predicted for a doping density of 5 {dollar}times{dollar} 10{dollar}sp{lcub}12{rcub}{dollar} cm{dollar}sp{lcub}-3{rcub}{dollar} in the high resistivity n base. These calculations can be directly used by device designers to select the set of parameters most suited to a given application.
机译:栅极关断晶闸管(GTO)是唯一具有自我关断功能的功率半导体,可用于开关2 kV以上的电压或1500 A以上的电流。尽管已经存在了三十年,它仍然是一个了解甚少的设备,这主要是由于关闭过程的复杂性以及其潜力尚未得到充分利用。作为更好地设计这些设备的重要一步,必须了解各种操作模式对物理参数和尺寸的依赖性。在我们的物理建模工作中,我们试图通过从第一原理为通态和关断机制开发新的物理分析模型,以及将闭塞能力与稳态耗散联系起来的设计考虑因素,来提高一般的理解水平。在任何分析中均未使用拟合参数。我们基于当前连续性方程式的关断模型表征了少数载流子等离子体的压缩,提出了最小“ on”区域尺寸(通常为25 {μm} mu {dolal} m)的物理基础,并预测了第一次,存储时间取决于阳极和栅极电流,器件尺寸和物理参数。这些预测与我们在马尔文(Malvern)G.E.的实验非常吻合,并且通过对我们工作之前无法解释的其他工人的测量也得到了证实。还开发了一种新的物理模型来分析温度相关的稳态工作状态模式。它包括俄歇(Auger)和SRH重组,载流子迁移率对温度和注入水平的依赖性以及器件几何形状的影响。从G.E.获得的阳极电流高达3000 A的实验电流-电压特性。 25℃和115℃时的装置与理论预测值非常接近。此外,首次开发了设计程序,以证明具有两层n碱基的GTO相对于常规pnpn结构的总体优越性(8000 V的阻断能力需要n的1100μm后者的基础,而前者仅约780 {μm}美元。我们的设计计算在尺寸,掺杂密度和基本物理参数方面将每个器件的前向阻塞和导通状态特性联系在一起。掺杂浓度为5 {dollar}乘以{dollar} 10 {dollar} sp {lcub} 12 {rcub} {dollar} cm {dollar} sp {lcub} -3 { rcub} {dollar}在高电阻率n基中。器件设计人员可以直接使用这些计算来选择最适合给定应用程序的参数集。

著录项

  • 作者

    Dutta, Ranadeep.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号