首页> 外文学位 >Fully-complementary BiCMOS on thin-film SOI utilizing high-performance lateral BJT's.
【24h】

Fully-complementary BiCMOS on thin-film SOI utilizing high-performance lateral BJT's.

机译:利用高性能横向BJT在薄膜SOI上实现完全互补的BiCMOS。

获取原文
获取原文并翻译 | 示例

摘要

The first fully-complementary, deep-sub-micron BiCMOS technology using thin-film Silicon-on-Insulator (SOI) substrates is described. Fully-complementary, CBiCMOS technologies, which combine both PNP and NPN bipolar transistors with complementary MOSFET's, are especially important as gate lengths scale below 0.5{dollar}mu{dollar}m and power supplies are reduced below 3.3 volts. While CBiCMOS processes on bulk silicon are very complex, thin-film SOI substrates permit much simpler device integration. In addition, complementary BJT's are most easily integrated when their structure is lateral, instead of vertical. In this work, complementary, lateral BJT's and fully-overlapped LDD MOSFET's are fabricated on SOI with only ten masks. This process is substantially less complex than state-of-the-art BiCMOS processes.; Various means of achieving a thin-film SOI structure are investigated, including Separation by IMplanted OXygen (SIMOX), Bonded wafer with Etchback (BESOI), and Epitaxial Lateral Overgrowth (ELO). The crystalline quality of the silicon films is addressed with respect to the fabrication of minority-carrier, bipolar transistors.; Several potential SOI lateral bipolar transistor structures are analyzed in order to obtain the optimum structure for both high-performance and low-complexity. This lateral BJT structure is fully characterized to obtain both DC and AC performance characteristics.; Nearly-fully-depleted SOI MOSFET's with remarkable current drive and short channel behavior down to 0.15{dollar}mu{dollar}m are described. The threshold voltage control and series resistance of these partially-depleted devices are superior to ultra-thin-film, fully-depleted SOI MOSFET's. A novel isolation technique called ROSIE (Re-Oxidized Silicon Island Edges), is implemented and shown to be superior to LOCOS with regard to NMOS device edge behavior. NMOS and CMOS ring oscillators incorporating these SOI MOSFET's exhibit record propagation delays. In addition, various fully-complementary BiCMOS logic gates are investigated, in order to demonstrate the strength of this technology.; A novel "hybrid" mode of device operation is investigated, in which both lateral bipolar and MOSFET channel currents flow simultaneously. The g{dollar}sb{lcub}rm m{rcub}{dollar} and current drive in this mode of operation are significantly higher than either the MOSFET or lateral BJT alone. The turn-on voltage is reduced, permitting operation at supply voltages of less than one volt.; Finally, a new quasi-2-D analytical model for Gate-Induced Drain Leakage (GIDL) current in thin-oxide MOSFET's is developed. This off-state leakage current is particularly troublesome for deep-sub-micron SOI MOSFET's.
机译:描述了使用薄膜绝缘体上硅(SOI)衬底的第一个完全互补的深亚微米BiCMOS技术。完全互补的CBiCMOS技术将PNP和NPN双极晶体管与互补的MOSFET结合在一起,特别重要,因为栅极长度定在0.5微米以下,电源电压降至3.3伏以下。尽管在块状硅上的CBiCMOS工艺非常复杂,但薄膜SOI衬底却允许更简单的器件集成。此外,互补的BJT的结构是横向而不是垂直时最容易集成。在这项工作中,仅用十个掩模在SOI上制造了互补的横向BJT和完全重叠的LDD MOSFET。此过程比最先进的BiCMOS过程要复杂得多。研究了实现薄膜SOI结构的各种方法,包括通过植入式氧的分离(SIMOX),带蚀刻的键合晶圆(BESOI)和外延横向过生长(ELO)。关于少数载流子,双极晶体管的制造,解决了硅膜的晶体质量。为了获得高性能和低复杂度的最佳结构,分析了几种潜在的SOI横向双极晶体管结构。这种横向BJT结构具有充分的特性,可同时获得直流和交流性能特征。描述了一种几乎耗尽的SOI MOSFET,具有出色的电流驱动能力和低至0.15μm的短沟道性能。这些部分耗尽型器件的阈值电压控制和串联电阻优于超薄膜,完全耗尽型SOI MOSFET。实现了一种称为ROSIE(再氧化的硅岛边缘)的新颖隔离技术,在NMOS器件边缘性能方面,该隔离技术显示出优于LOCOS的优势。结合了这些SOI MOSFET的NMOS和CMOS环形振荡器表现出创纪录的传播延迟。此外,为了证明该技术的优势,还研究了各种完全互补的BiCMOS逻辑门。研究了一种新型的“混合”器件工作模式,其中横向双极型和MOSFET沟道电流同时流动。在这种工作模式下的g驱动器和电流驱动器明显高于单独的MOSFET或横向BJT。降低了开启电压,允许在小于一伏的电源电压下运行;最后,针对薄氧化物MOSFET的栅极感应漏电流(GIDL),开发了一种新的准二维分析模型。对于深亚微米SOI MOSFET而言,这种断态泄漏电流特别麻烦。

著录项

  • 作者

    Parke, Stephen Anthony.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号