首页> 外文学位 >Design of electrostatic actuators to tune the effective stiffness of micro-electro-mechanical systems.
【24h】

Design of electrostatic actuators to tune the effective stiffness of micro-electro-mechanical systems.

机译:静电执行器的设计,用于调整微机电系统的有效刚度。

获取原文
获取原文并翻译 | 示例

摘要

Micromechanical devices, despite their breadth of application, are frequently based on simple one-degree-of-freedom spring-mass systems. The purpose of the work being presented is to show a method of tuning the behavior of such systems. This tuning ranges from a subtle adjustment of the system's resonant frequency to the formation of multiple potential wells. Specific topics covered include: tuning of the linear stiffness, simulation, independent tuning of the linear and cubic stiffnesses, and formation of multiple potential wells.;We present five electrostatic actuators that tune the stiffness and hence the resonant frequency of a micromechanical oscillator. Using these actuators, resonant frequencies have been reduced to 7.7% and raised to 146% of their original values. These shifts correspond to approximately two orders of magnitude reduction in stiffness and a doubling in stiffness. respectively. Comparisons are drawn based on functionality. area utilization efficiency, and linearity. Discussions include the effects of asymmetries, stability, and nonlinearities.;Associated with the design of tuning actuators is the need to model their behavior. Most of the work is based on a complex electrostatic actuator referred to as a non-overlapping comb drive. This complexity prompted the writing of a 2D electrostatics and elastostatics simulation package referred to as HASP. The package is capable of solving coupled electro-mechanical problems in a self-consistent manner and automatically characterizing an actuator over a line or an array of configurations. With this package, we performed an energy based stability analysis using a computationally efficient strategy. The device under study was a tunable oscillator. By applying a tuning voltage, the effective stiffness of the system was reduced. At a tuning voltage of approximately 50V, a supercritical pitchfork bifurcation was predicted and experimentally verified. Further increase in the tuning voltage was shown to eventually lead to failure.;Frequently micromechanical oscillators and sensors show the presence of cubic stiffness terms in their performance. Using a combination of electrostatic actuators, we present a method to independently tune their linear and nonlinear stiffness coefficients. To demonstrate the methods capability. we investigated the tuning of an oscillator with linear and cubic restoring forces. We successfully tuned the cubic stiffness from ;Finally, the electrostatic tuning actuators are applied to the formation of systems that exhibit multiple potential wells. Using three different tuning actuators, double- and triple-well potentials are demonstrated theoretically and experimentally.
机译:尽管微机械装置具有广泛的应用范围,但它们通常基于简单的一自由度弹簧质量系统。提出的工作目的是展示一种调整此类系统行为的方法。这种调整的范围从微调系统的共振频率到形成多个势阱。涉及的具体主题包括:线性刚度的调整,仿真,线性和立方刚度的独立调整以及多个势阱的形成。;我们介绍了五个静电致动器,用于调整刚度,从而调整微机械振荡器的共振频率。使用这些执行器,谐振频率已降低到其原始值的7.7%,并提高到其原始值的146%。这些变化对应于刚度减小大约两个数量级,而刚度则增加一倍。分别。根据功能进行比较。面积利用效率和线性。讨论包括不对称,稳定性和非线性的影响。与执行器的设计相关的是对它们的行为进行建模的需求。大部分工作基于复杂的静电致动器,称为非重叠梳状驱动器。这种复杂性促使编写称为HASP的2D静电和弹力仿真程序包。该包装盒能够以自洽的方式解决耦合的机电问题,并能够自动地以一系列或一系列配置来表征执行器。使用此软件包,我们使用了计算有效的策略进行了基于能量的稳定性分析。被研究的设备是一个可调振荡器。通过施加调谐电压,降低了系统的有效刚度。在大约50V的调谐电压下,可以预测并通过实验验证超临界干草叉的分叉。结果表明,调谐电压的进一步增加最终会导致故障。;经常,微机械振荡器和传感器在其性能中显示出立方刚度项。通过使用静电执行器的组合,我们提出了一种独立调整其线性和非线性刚度系数的方法。演示方法的能力。我们研究了具有线性和三次恢复力的振荡器的调谐。我们成功地从中调整了立方刚度;最后,将静电调整执行器应用于具有多个潜在井的系统的形成。使用三种不同的调谐执行器,在理论上和实验上证明了双阱和三阱电位。

著录项

  • 作者

    Adams, Scott Granger.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 235 p.
  • 总页数 235
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号