首页> 外文学位 >Crack growth phenomena in micro-machined single crystal silicon and design implications for micro electro mechanical systems (MEMS).
【24h】

Crack growth phenomena in micro-machined single crystal silicon and design implications for micro electro mechanical systems (MEMS).

机译:微加工单晶硅中的裂纹扩展现象及其对微机电系统(MEMS)的设计意义。

获取原文
获取原文并翻译 | 示例

摘要

The creation of micron-sized mechanisms using semiconductor processing technology is known collectively as MEMS, or Micro Electro Mechanical Systems. Many MEMS devices, such as accelerometers and switches, have mechanical structures fabricated from single crystal silicon, a brittle material. The reliability and longevity of these devices depends on minimizing the probability of fracture, and therefore requires a thorough understanding of crack growth phenomena in silicon.; In this study, a special micro-machined fracture specimen, the compression-loaded double cantilever beam, was developed to study fracture phenomena in single crystal silicon on a size scale relevant to MEMS. The decreasing stress intensity geometry of this sample provided stable, controllable crack propagation in test sections as thin as 100 mum. Several common MEMS fabrication methods (plasma and chemical etch) were used to achieve a range of surface finishes. A 650 A thick titanium crack gage was used to directly measure crack extension as a function of time using the potential drop technique. High speed (100 MHz) data acquisition techniques were employed to capture fracture events on the sub-microsecond time scale.; The stability of the sample design and the micron-scale resolution of the crack gage facilitated investigation into the existence of a stress corrosion effect in silicon. No evidence of sub-critical crack growth due to exposure to humid air was found in carefully controlled tests lasting up to 24 hours.; Rapid crack propagation velocities (>1 km/s) during quasi-static loading were recorded using high speed data acquisition techniques. Unique evidence was found of reflected stress waves causing multiple, momentary arrests during rapid fracture events. These measurements, along with atomic force microscope scans of the fracture surfaces, offer new insight into the kinetics of the fracture process in silicon.; Over 100 micro-machined samples were fractured in this research. Weibull analysis was employed to characterize, in a broadly applicable manner, the failure probability of samples as a function of surface preparation and applied stress intensity. A design study of an existing MEMS device is presented in order to demonstrate the utility of the data gathered during this research for predicting the failure of silicon MEMS devices.
机译:使用半导体处理技术创建微米级的机构统称为MEMS(微机电系统)。许多MEMS装置(例如加速度计和开关)具有由单晶硅(一种脆性材料)制成的机械结构。这些设备的可靠性和寿命取决于将破裂的可能性降到最低,因此需要对硅中裂纹扩展现象有透彻的了解。在这项研究中,开发了一种特殊的微机械断裂标本,即压缩加载的双悬臂梁,以与MEMS相关的尺寸规模研究了单晶硅中的断裂现象。该样品的应力强度几何形状不断减小,在薄至100毫米的测试区域中提供了稳定,可控的裂纹扩展。几种常见的MEMS制造方法(等离子和化学蚀刻)用于实现一系列表面光洁度。使用电势下降技术,使用650 A厚的钛裂纹规直接测量随时间变化的裂纹扩展。高速(100 MHz)数据采集技术用于捕获亚微秒级的断裂事件。样品设计的稳定性和裂纹规的微米级分辨率有助于研究硅中应力腐蚀效应的存在。经过长达24小时的精心控制试验,未发现由于暴露于潮湿空气而导致亚临界裂纹扩展的证据。使用高速数据采集技术记录了准静态载荷下的快速裂纹扩展速度(> 1 km / s)。独特的证据表明,反射应力波在快速骨折事件中引起多个瞬时停滞。这些测量结果以及原子力显微镜对断裂表面的扫描,为了解硅中断裂过程的动力学提供了新的见识。在这项研究中,有100多个微加工的样品断裂。韦布尔分析以广泛适用的方式表征了样品的失效概率,该概率是表面制备和施加的应力强度的函数。提出了对现有MEMS器件的设计研究,以证明在此研究过程中收集的数据可用于预测硅MEMS器件的故障。

著录项

  • 作者

    Fitzgerald, Alissa Mirella.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号