首页> 外文学位 >Scanning tunneling microscopy of compound semiconductor heterostructures: From alloy ordering to composition determination.
【24h】

Scanning tunneling microscopy of compound semiconductor heterostructures: From alloy ordering to composition determination.

机译:化合物半导体异质结构的扫描隧道显微镜:从合金有序到成分确定。

获取原文
获取原文并翻译 | 示例

摘要

Cross-sectional scanning tunneling microscopy (XSTM) has been employed to explore various material properties of III-V compound semiconductor heterostructures. Regarding GaInP alloys, the (111)-type alloy ordering is observed in organometallic vapor phase epitaxy (OMVPE) grown alloy region, while the molecular beam epitaxy (MBE) grown region shows a very small degree of ordering. Two types of ordering, namely (InP)1(GaP)1 and (InP)2(GaP) 1, have been found in OMVPE grown GaInP alloys. Then, the focus is shifted to the structural properties of self-assembled InGaAs quantum dots (QDs) grown by migration enhanced epitaxy (MEE) and heterogeneous droplet epitaxy (HDE) respectively. Size, shape, orientation, spatial distribution, strain, and composition have been examined. Regarding MEE grown InGaAs QDs, the composition appears highly non-uniform, with an Indium-rich core having an inverted-triangle shape. With atomic resolution, compositional analysis has been done for both the QDs and wetting layers quantitatively. Depletion of the wetting layer, due to the formation of the QDs, is also demonstrated. For HDE grown InGaAs QDs, the size, shape, composition, and strain, etc., are quite different from that of MEE or MBE grown InGaAs QDs. Indium distribution inside the QDs is rather uniform compared with MEE grown InGaAs QDs. More importantly, it is found that the self-compensation between the size and indium concentration of the QDs appears to be the key factor that controls the sharpness of the photoluminescence (PL) linewidths in the investigated samples.
机译:截面扫描隧道显微镜(XSTM)已被用于探索III-V化合物半导体异质结构的各种材料特性。关于GaInP合金,在有机金属气相外延(OMVPE)生长的合金区域中观察到(111)型合金有序,而分子束外延(MBE)生长的区域显示出非常小的有序度。在OMVPE生长的GaInP合金中发现了两种类型的有序化,即(InP)1(GaP)1和(InP)2(GaP)1。然后,重点转移到分别通过迁移增强外延(MEE)和异质液滴外延(HDE)生长的自组装InGaAs量子点(QD)的结构性质。已经检查了尺寸,形状,方向,空间分布,应变和组成。关于由MEE生长的InGaAs QD,其组成看起来非常不均匀,富含铟的核呈倒三角形形状。通过原子分辨率,已经对量子点和润湿层都进行了成分分析。还证实了由于形成量子点而导致的润湿层的耗尽。对于HDE生长的InGaAs QD,其尺寸,形状,成分和应变等与MEE或MBE生长的InGaAs QD完全不同。与MEE生长的InGaAs量子点相比,量子点内部的铟分布相当均匀。更重要的是,发现QD尺寸和铟浓度之间的自补偿似乎是控制研究样品中光致发光(PL)线宽锐度的关键因素。

著录项

  • 作者

    Liu, Ning.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号