首页> 外文学位 >Ultra-High Voltage 4H-SiC Bi-Directional Insulated Gate Bipolar Transistors.
【24h】

Ultra-High Voltage 4H-SiC Bi-Directional Insulated Gate Bipolar Transistors.

机译:超高压4H-SiC双向绝缘栅双极晶体管。

获取原文
获取原文并翻译 | 示例

摘要

4H- Silicon Carbide (4H-SiC) is an attractive material for power semiconductor devices due to its large bandgap, high critical electric field and high thermal conductivity compared to Silicon (Si). For ultra-high voltage applications (BV > 10 kV), 4H-SiC Insulated Gate Bipolar Transistors (IGBTs) are favored over unipolar transistors due to lower conduction losses. With improvements in SiC materials and processing technology, promising results have been demonstrated in the area of conventional unidirectional 4H-SiC IGBTs, with breakdown voltage ratings up to 27 kV.;This research presents the experimental demonstration of the world's first high voltage bi-directional power transistors in 4H-SiC. Traditionally, four (two IGBTs and two diodes) or two (two reverse blocking IGBTs) semiconductor devices are necessary to yield a bidirectional switch. With a monolithically integrated bidirectional switch as presented here, the number of semiconductor devices is reduced to only one, which results in increased reliability and reduced cost of the overall system. Additionally, by using the unique dual gate operation of BD-IGBTs, switching losses can be reduced to a small fraction of that in conventional IGBTs, resulting in increased efficiency.;First, the performance limits of SiC IGBTs are calculated by using analytical methods. The performance benefits of SiC IGBTs over SiC unipolar devices and Si IGBTs are quantified. Numerical simulations are used to optimize the unit cell and edge termination structures for a 15 kV SiC BD-IGBT. The effect of different device parameters on BD-IGBT static and switching performance are quantified.;Second, the process technology necessary for the fabrication of high voltage SiC BD-IGBTs is optimized. The effect of different process steps on parameters such as breakdown voltage, carrier lifetime, gate oxide reliability, SiO2-SiC interface charge density is quantified. A carrier lifetime enhancement process has been optimized for lightly doped 4H-SiC free-standing substrates (FSS), with long carrier lifetimes up to 10 mus at room temperature. The FSS wafer technology and double sided, ion implanted process used in this research has wide applicability beyond that of BD-IGBTs. As compared to previous reports using epitaxial P+ collectors, this process can be easily adapted for conventional IGBTs, as well as reverse blocking and reverse conducing IGBTs.;Finally, the experimental results on fabricated SiC BD-IGBTs are presented. Prototype transistors were fabricated on novel, lightly doped n-type free-standing substrates. On Si-face, the BD- IGBTs showed good conductivity modulation, with a forward voltage drop (VF) of 9.7 V at 50 A/cm2 at room temperature, increasing to 11.5 V at 150 °C. On-state performance in third quadrant operation was limited by high threshold voltage on C-face. We have also demonstrated control over minority carrier injection by using a backgate bias, which can be used to drastically reduce switching losses.
机译:4H-碳化硅(4H-SiC)与硅(Si)相比,由于其带隙大,高临界电场和高导热率而成为功率半导体器件的诱人材料。对于超高压应用(BV> 10 kV),由于具有较低的传导损耗,因此与单极晶体管相比,更倾向于使用4H-SiC绝缘栅双极晶体管(IGBT)。随着SiC材料和加工技术的改进,在常规单向4H-SiC IGBT领域中已显示出令人鼓舞的结果,其击穿电压额定值高达27 kV .;该研究提供了世界上第一个高压双向实验证明4H-SiC中的功率晶体管。传统上,需要四个(两个IGBT和两个二极管)或两个(两个反向阻断IGBT)半导体器件来产生双向开关。利用这里提出的单片集成双向开关,半导体器件的数量减少到只有一个,从而提高了可靠性并降低了整个系统的成本。此外,通过使用BD-IGBT独特的双栅极操作,可以将开关损耗降低到传统IGBT的一小部分,从而提高了效率。首先,使用分析方法来计算SiC IGBT的性能极限。量化了SiC IGBT优于SiC单极器件和Si IGBT的性能优势。数值模拟用于优化15 kV SiC BD-IGBT的晶胞和边缘终端结构。量化了器件参数对BD-IGBT静态和开关性能​​的影响。其次,优化了高压SiC BD-IGBT的制造工艺。量化了不同工艺步骤对击穿电压,载流子寿命,栅极氧化物可靠性,SiO2-SiC界面电荷密度等参数的影响。对于轻掺杂4H-SiC自支撑衬底(FSS),已经优化了载流子寿命增强工艺,在室温下,载流子寿命长达10 mus。本研究中使用的FSS晶片技术和双面离子注入工艺具有比BD-IGBT更高的适用性。与以前使用外延P +集电极的报道相比,该工艺可以轻松地适用于常规IGBT,以及反向阻断和反向导通IGBT。最后,给出了制造的SiC BD-IGBT的实验结果。原型晶体管是在新型轻掺杂n型自支撑衬底上制造的。在Si面上,BD-IGBT表现出良好的电导率调制,在室温下50 A / cm2时的正向压降(VF)为9.7 V,在150°C时增加至11.5V。 C面上的高阈值电压限制了第三象限运行中的通态性能。我们还展示了通过使用背栅偏置对少数载流子注入的控制,该偏置可用于大幅降低开关损耗。

著录项

  • 作者

    Chowdhury, Sauvik.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Electrical engineering.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号