...
首页> 外文期刊>Journal of Applied Physics >Epitaxial growth and characterization of thick multi-layer 4H-SiC for very high-voltage insulated gate bipolar transistors
【24h】

Epitaxial growth and characterization of thick multi-layer 4H-SiC for very high-voltage insulated gate bipolar transistors

机译:超高压绝缘栅双极晶体管的多层多层4H-SiC的外延生长和表征

获取原文
获取原文并翻译 | 示例
           

摘要

Techniques to fabricate thick multi-layer 4H-SiC epitaxial wafers were studied for very high-voltage p- and n-channel insulated gate bipolar transistors (IGBTs). Multi-layer epitaxial growth, including a thick p~- drift layer (~180 μm), was performed on a 4H-SiC n~+ substrate to form a p-IGBT structure. For an n-IGBT structure, an inverted growth process was employed, in which a thick n~- drift layer (~180 μm) and a thick p~(++) injector layer (>55 μm) were epitaxially grown. The epitaxial growth conditions were modified to attain a low defect density, a low doping concentration, and a long carrier lifetime in the drift layers. Reduction of the forward voltage drop was attempted by using carrier lifetime enhancement processes, specifically, carbon ion implantation/annealing and thermal oxidation/annealing or hydrogen annealing. Simple PiN diodes were fabricated to demonstrate the effective conductivity modulation in the thick drift layers. The forward voltage drops of the PiN diodes with the p- and n-IGBT structures promise to obtain the extremely low-loss and very high-voltage IGBTs. The change in wafer shape during the processing of the very thick multi-layer 4H-SiC is also discussed.
机译:研究了用于超高压p沟道和n沟道绝缘栅双极晶体管(IGBT)的制造多层多层4H-SiC外延晶片的技术。在4H-SiC n〜+衬底上进行包括厚p〜-漂移层(〜180μm)的多层外延生长,以形成p-IGBT结构。对于n-IGBT结构,采用了反向生长工艺,其中外延生长了厚的n〜-漂移层(〜180μm)和厚的p〜(++)注入层(> 55μm)。修改外延生长条件以在漂移层中获得低缺陷密度,低掺杂浓度和长载流子寿命。通过使用载流子寿命提高方法,特别是碳离子注入/退火和热氧化/退火或氢退火,试图降低正向电压降。制作了简单的PiN二极管以演示在厚漂移层中的有效电导率调制。具有p型和n型IGBT结构的PiN二极管的正向压降有望获得极低损耗和极高电压的IGBT。还讨论了非常厚的多层4H-SiC加工过程中晶片形状的变化。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第8期|085702.1-085702.10|共10页
  • 作者单位

    Central Research Institute of Electric Power Industry (CRIEPI), 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan;

    Power Engineering R&D Center, Kansai Electric Power Co., Inc., 3-11-20 Nakoji, Amagasaki, Hyogo 661-0974, Japan;

    Power Engineering R&D Center, Kansai Electric Power Co., Inc., 3-11-20 Nakoji, Amagasaki, Hyogo 661-0974, Japan;

    Power Engineering R&D Center, Kansai Electric Power Co., Inc., 3-11-20 Nakoji, Amagasaki, Hyogo 661-0974, Japan;

    National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan;

    Central Research Institute of Electric Power Industry (CRIEPI), 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号