首页> 外文学位 >Extended defects and hydrogen interactions in ion implanted silicon.
【24h】

Extended defects and hydrogen interactions in ion implanted silicon.

机译:离子注入硅中扩展的缺陷和氢相互作用。

获取原文
获取原文并翻译 | 示例

摘要

The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful.; In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (650°C) defect dissolution and defect injection dominates, resulting in increased junction depths. At higher anneal temperatures, however, repair dominates over defect injection resulting in shallower junctions. Hydrogenation experiments shows that hydrogen enhances dopant activation and reduces TED at low anneal temperatures (550°C). At anneal temperatures >550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (∼850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant.; In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 × 1020 cm−3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for along time (300min). Also presented is the recipe for formation of multiple cavity layers and the electrical and optical properties of these cavities. Electrically, these cavities are metastable, with two strong minority carrier peaks formed by multiple defect levels. Photoluminescence measurements reveal a strong 0.8eV photon peak.
机译:在这项工作中,已经研究了由于离子注入而产生的扩展缺陷的结构和电学性质以及氢与这些缺陷的相互作用。研究了两个不同的主题,第一个主题是有害的有害缺陷,第二个主题是有用的缺陷。在第一种情况下,已经研究了硼的瞬态增强扩散,并与由于硅和氩离子注入导致的缺陷演变研究相关。扩展电阻曲线(SRP)与深层瞬态光谱(DLTS)测量相关,表明低退火温度(<650°C)缺陷溶解和缺陷注入占主导地位,导致结深度增加。但是,在较高的退火温度下,修复会超过缺陷注入,从而导致结变浅。氢化实验表明,在较低的退火温度(<550°C)下,氢可增强掺杂剂的活化并降低TED。在高于550°C的退火温度下,由于氢的向外扩散,失去了氢的作用。此外,由于氢气的灾难性向外扩散,与未氢化的样品相比,还会造成额外的破坏,从而导致氢化样品中的连接处更深。比较在不同退火温度下由于Si和Ar离子注入导致的缺陷演变,尽管两种情况下缺陷的类型相同,但对于Si注入来说,它们的(缺陷)溶解在较低的退火温度(约850°C)下发生。 Ar注入的溶解似乎发生在较高的退火温度下。差异归因于Ar产生的空位数量增加了硅注入的空位数量。在第二方面,已经通过氦离子注入和炉内退火研究了由于空位团聚形成的纳米腔,其中氦剂量,注入能量和退火时间的影响已经改变了工艺参数。只有当He的局部浓度大于3×10 20 cm -3 时,才会形成空穴。在高注入剂量下,形成了连续的空腔层,而在低注入剂量下,观察到了不连续的层。首次观察到低剂量的空洞的形成。退火时间的变化表明,型腔最初是刻面的(较短的退火时间),并且在沿时间(300分钟)退火时往往会变成球形。还介绍了形成多个空腔层的方法以及这些空腔的电学和光学特性。从电气上讲,这些空穴是亚稳态的,由多个缺陷能级形成两个很强的少数载流子峰。光致发光测量结果显示一个很强的0.8eV光子峰。

著录项

  • 作者

    Rangan, Sanjay.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号