首页> 外文学位 >Deployable stable traffic assignment models for control in dynamic traffic networks: A dynamical systems approach.
【24h】

Deployable stable traffic assignment models for control in dynamic traffic networks: A dynamical systems approach.

机译:用于动态交通网络中控制的可部署稳定交通分配模型:动态系统方法。

获取原文
获取原文并翻译 | 示例

摘要

This study addresses stability issues in the context of operational dynamic traffic assignment (DTA) strategies for traffic networks equipped with advanced information and sensor systems. LaSalle's theorem, an extension of the Lyapunov approach from non-linear dynamical systems, is used to analyze the global behavior vis-a-vis the stability of the solutions prescribed by the control strategies for dynamic traffic networks with time-dependent demand. The stability analysis focuses on demonstrating that the proposed control strategies move the system towards the corresponding time-dependent stable desirable states rather than focusing on a single stable state. An important contribution of the study is that the Lyapunov functions for the system optimal (SO) and user equilibrium (UE) objectives are their corresponding objective functions under DTA. This overcomes the key difficulty of constructing a meaningful Lyapunov function for such systems, and provides a general framework for the stability analysis of operational dynamic traffic assignment problems. These different control structures are proposed based on the available traffic information. The feedback control structure is used only when current traffic information is available and there is a lack of predictive information. The internal model control (IMC) structure can be applied when reasonably accurate near-term future predictions are feasible. The external prediction control structure can be used when robust models are available to predict future traffic conditions. This flexibility provides the ability to make trade-offs between computational efficiency and solution accuracy facilitating the implementation of deployable solution algorithms. Simulations experiments are performed for a real traffic network to test the effectiveness, efficiency, and reliability of the proposed models. The results show that the proposed models provide orders of magnitude improvements in computational efficiency over benchmark deterministic DTA models while maintaining a sufficient level of solution accuracy.
机译:这项研究针对具有先进信息和传感器系统的交通网络,在操作动态交通分配(DTA)策略的背景下解决稳定性问题。 LaSalle定理是非线性动态系统的Lyapunov方法的扩展,用于分析具有时变需求的动态交通网络的控制策略所规定的解决方案稳定性的全局行为。稳定性分析的重点是证明所提出的控制策略将系统移向相应的时间相关的稳定期望状态,而不是专注于单个稳定状态。该研究的重要贡献在于,系统最优(SO)和用户均衡(UE)目标的Lyapunov函数是DTA下它们相应的目标函数。这克服了为此类系统构建有意义的Lyapunov函数的关键难题,并为运营动态交通分配问题的稳定性分析提供了通用框架。根据可用的交通信息,提出了这些不同的控制结构。仅当可获得当前交通信息并且缺少预测信息时才使用反馈控制结构。当合理准确的近期近期预测可行时,可以应用内部模型控制(IMC)结构。当鲁棒模型可用于预测未来交通状况时,可以使用外部预测控制结构。这种灵活性提供了在计算效率和解决方案精度之间进行权衡的能力,从而促进了可部署解决方案算法的实现。对真实的交通网络进行了仿真实验,以测试所提出模型的有效性,效率和可靠性。结果表明,所提出的模型与基准确定性DTA模型相比,在计算效率上提高了几个数量级,同时保持了足够水平的求解精度。

著录项

  • 作者

    Yang, Ta-Hui.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号