首页> 外文学位 >Reaction paths for self-organized surface roughening of silicon-germanium alloys during hydride gas-source molecular beam epitaxy.
【24h】

Reaction paths for self-organized surface roughening of silicon-germanium alloys during hydride gas-source molecular beam epitaxy.

机译:氢化物气源分子束外延过程中硅锗合金自组织表面粗糙化的反应路径。

获取原文
获取原文并翻译 | 示例

摘要

Compressively-strained Si0.7Ge0.3 layers were grown on Si(001) by gas-source molecular beam epitaxy (GS-MBE) from Ge 2H6/Si2H6 mixtures in order to probe the effect of surface hydrogen on the evolution of strain-induced roughening and misfit-dislocation-induced surface roughening (crosshatch).; Fully coherent layers were grown at Ts = 450–550°C, where strain-induced roughening is observed in solid-source MBE (SS-MBE). Three-dimensional strain-induced growth mounds are obtained in samples deposited at Ts = 550°C for which the steady-state hydrogen coverage &thetas; H is 0.11 ML. However, mound formation is decreased at 500°C (&thetas; H = 0.26 ML) and completely quenched at 450°C (&thetas;H = 0.52 ML). The large differences in surface morphological evolution are due primarily to effects of &thetas;H on film growth rates RSiGe and asending step-crossing probabilities. Growth at 450°C remains two-dimensional, since both RSiGe and the rate of mass transport across ascending steps are low. Raising Ts to 500°C increases RSiGe faster than the diffusivity leading to shorter mean surface diffusion lengths and the formation of extremely shallow, rounded growth mounds. The low ascending step crossing probability at 500°C results in mounds that spread laterally, rather than vertically, due to preferential attachment at mound edges. At Ts = 550°C, the ascending-step crossing probability increases due to both higher thermal activation and lower hydrogen coverages. The mounds height increases by more than a factor of ten, while their areal density remains constant. This leads to the formation of self-organized 3D {lcub}105{rcub}-faceted pyramids at 550°C similar to those observed during SS-MBE.; Si0.7Ge0.3(001) layers were grown at Ts = 450°C, where strain-induced roughening is completely quenched, to thicknesses greater than the critical value for misfit dislocation formation (tc ≃ 100 nm) to probe the effect of &thetas;H on cross-hatch formation. At t slightly larger than tc, surface roughness is dominated by single- and multiple-atomic-height steps associated with the interfacial misfits. The surface steps are preferential H desorption sites, thus the increased total step length results in a decrease in &thetas;H on terraces which increases RSiGe and allows higher adatom ascending step crossing probabilities which, driven by the inhomogeneous strain fields around the misfit dislocation clusters, contributes to the growth of periodic ridges.
机译:通过气源分子束外延法(GS-MBE),从Ge 2 中在Si(001)上生长了压缩应变的Si 0.7 Ge 0.3 层> H 6 / Si 2 H 6 混合物是为了研究表面氢对应变诱导的粗糙化和失配的演化的影响。位错引起的表面粗糙化(交叉影线)。完全连贯的层在T s = 450–550°C时生长,在此情况下,在固体源MBE(SS-MBE)中观察到应变引起的粗糙化。在以T s = 550°C沉积的样品中获得了三维应变诱发的生长丘,其稳态氢覆盖度 H 为0.11 ML。但是,在500°C(θH = 0.26 ML)时,堆的形成减少了,而在450°C(θH = 0.52 ML)时,淬火完全了。表面形貌演变的巨大差异主要是由于 H 对薄膜生长速率R SiGe 的影响以及逐步跨越的可能性。由于R GeGe 和跨上升步骤的质量传输速率均较低,因此在450°C下仍保持二维生长。将T s 提高到500°C会使R SiGe 的扩散速度快于扩散率,从而导致较短的平均表面扩散长度并形成极浅的圆形生长丘。由于在丘边缘处的优先附着,在500°C下较低的上升阶梯交叉概率会导致丘横向而不是垂直分布。在T s = 550°C时,由于较高的热活化和较低的氢覆盖率,上升步穿越的可能性增加。土墩的高度增加了十倍以上,而它们的面密度却保持不变。这导致在550°C下形成类似于SS-MBE的自组织3D {lcub} 105 {rcub}面金字塔。 Si 0.7 Ge 0.3 (001)层在T s = 450°C的条件下生长,在该温度下,应变诱导的粗糙化被完全淬火至厚度大于错配位错形成的临界值(t c sime; 100 nm),以探测& H H 对交叉影线形成的影响。在t稍大于t c 的情况下,表面粗糙度由与界面失配相关的单原子高度台阶和多原子高度台阶决定。表面台阶是优先的H解吸位点,因此增加的总台阶长度会导致阶地上的 H 减少,从而增加R SiGe 并允许更高的吸附原子上升台阶由错配位错簇周围不均匀应变场驱动的概率有助于周期性脊的生长。

著录项

  • 作者

    Spila, Timothy Paul.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号