首页> 外文学位 >Nanofabrication technologies and novel device structures for nanoscale CMOS.
【24h】

Nanofabrication technologies and novel device structures for nanoscale CMOS.

机译:用于纳米级CMOS的纳米制造技术和新颖的器件结构。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates new patterning technologies and novel device structures for sub-20nm complementary metal-oxide-semiconductor (CMOS). Ashing-trimming and spacer lithography technology for patterning sub-20nm features are investigated.; Ultra-thin body (UTB) metal-oxide-semiconductor field-effect transistors (MOSFETs) are demonstrated and they show excellent suppression of short-channel effects. One of its challenges is the large series resistance of the thin-body silicon. To overcome this difficulty, resist and poly-silicon etch-back process and selective germanium deposition are developed for raised source and drain. Devices with sub-30nm gate lengths, 750μA/μm of NMOS drive current, and 350μm/μm of PMOS drive current are demonstrated.; Thin body silicon can cause a change of sub-bands structure. As a result, threshold voltage shift and mobility enhancement are observed in UTB devices. Threshold voltage shift of UTB CMOS is modeled analytically and the model is verified with measured data. Mobility enhancement in the thin body is also examined.; Double-gate structure can provide more robustness against the short-channel effects. Simplified planar double-gate FinFETs are fabricated with two different patterning approaches: e-beam lithography and spacer lithography. Spacer lithography technology achieves twice the device density within a given pitch, which is limited by optical or e-beam lithography. It provides more uniform fin width, and ultimately narrower fins than what can be produced with conventional lithography. Devices with features below 60nm and drive current above 1000μA/μm (NMOS) and 760μA/μm (PMOS) have been demonstrated. Chemical-mechanical polishing (CMP) process is developed to overcome process challenges coming from the vertical device structures of FinFETs.; E-beam lithography with subsequent ashing-trimming has produced a 10nm silicon fin width and a sub-20mm gate length, which is the world record smallest transistor. Its NMOS drive current is 730μA/μm and PMOS drive current is 550μA/μm. Selective germanium is utilized to fabricate raised source and drain which minimize the parasitic series resistance and improve the drive current.
机译:本文研究了20nm以下互补金属氧化物半导体(CMOS)的新型图案化技术和新型器件结构。研究了灰化微调和间隔光刻技术,用于图案化20nm以下的特征。演示了超薄(UTB)金属氧化物半导体场效应晶体管(MOSFET),它们具有出色的短沟道效应抑制能力。其挑战之一是薄体硅的大串联电阻。为了克服这个困难,开发了抗蚀剂和多晶硅回蚀工艺以及选择性的锗沉积技术,以提高源极和漏极。展示了具有小于30nm栅极长度,Ni​​tal驱动电流750μA/μm350μm/μm的器件。薄体硅会引起子带结构的变化。结果,在UTB设备中观察到阈值电压偏移和迁移率增强。对UTB CMOS的阈值电压偏移进行了分析建模,并使用测量数据验证了该模型。还检查了瘦身的运动能力。双栅极结构可以提供更强的抵抗短沟道效应的能力。采用两种不同的构图方法制造了简化的平面双栅极FinFET:电子束光刻和间隔光刻。间隔光刻技术在给定的节距内实现了两倍的器件密度,这受到光学或电子束光刻的限制。与传统的光刻技术相比,它可以提供更均匀的鳍片宽度,并最终使鳍片更窄。已经证明了具有低于60nm特性且驱动电流高于1000μA/μm(NMOS)和760μA/μm730μA/μm,PMOS驱动电流为550μA/μm。选择性锗用于制造凸起的源极和漏极,从而最大程度地减少了寄生串联电阻并改善了驱动电流。

著录项

  • 作者

    Choi, Yang Kyu.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号