首页> 外文学位 >Convex optimization problems involving autocorrelation sequences.
【24h】

Convex optimization problems involving autocorrelation sequences.

机译:涉及自相关序列的凸优化问题。

获取原文
获取原文并翻译 | 示例

摘要

Semidefinite programming (SDP) has remained an active area of research since the late 1980s when interior-point methods for solving SDPs were introduced. As a result, many general-purpose SDP solvers are now available, and a wide variety of applications have been discovered in the fields of statistics, structural design, electrical engineering, and combinatorial optimization. For example, researchers have found ways to solve as SDPs some problems in control for which analytical solutions do not exist. However, the techniques used to formulate a problem as an SDP often result in the introduction of large numbers of auxiliary variables. This has an important consequence for interior-point methods, since the amount of work per iteration grows at least as the cube of the number of variables, which limits the size of the problems that can be solved in practice. One approach to overcome these limitations is to develop methods for exploiting problem structure. The aim of this dissertation is to demonstrate how interior-point methods may be developed to exploit structure in a useful class of SDPs, namely, SDPs involving autocorrelation sequences. Particular attention will be given to problems involving finite length sequences. Problems of this form arise in control, signal processing, and communications. A finite sequence constraint can be cast as a linear matrix inequality (LMI) via the Positive Real (PR) lemma. However, it has an important drawback: to represent a sequence of length n, it requires the introduction of n (n + 1)/2 auxiliary variables. This results in a high computational cost when general-purpose SDP solvers are used. A more efficient implementation based on duality and interior-point methods is presented. We also discuss optimization problems involving an entropy-rate function. Problems of this form arise in applications in speech synthesis and in estimation problems, and involve infinite length sequences. We describe an application to estimation, and develop efficient method s for solving these problems using results from duality. In summary, we demonstrate how interior-point methods may be developed to exploit structure in useful classes of SDPs. It is our belief that similar gains in efficiency are possible in other problem classes.
机译:自1980年代末提出求解SDP的内点方法以来,半定规划(SDP)一直是研究的活跃领域。结果,现在有许多通用的SDP求解器可用,并且在统计,结构设计,电气工程和组合优化领域中发现了各种各样的应用。例如,研究人员已经找到了解决作为SDP的控制方法的方法,而这些方法尚不存在分析解决方案。但是,用于将问题表示为SDP的技术通常会导致引入大量辅助变量。这对于内部点方法具有重要意义,因为每次迭代的工作量至少随着变量数量的立方增长而增加,这限制了可以在实践中解决的问题的大小。克服这些限制的一种方法是开发利用问题结构的方法。本文的目的是说明如何开发内点方法来利用有用的SDP类中的结构,即涉及自相关序列的SDP。将特别注意涉及有限长度序列的问题。这种形式的问题出现在控制,信号处理和通信中。可以通过正实数(PR)引理将有限序列约束转换为线性矩阵不等式(LMI)。但是,它有一个重要的缺点:要表示长度为 n 的序列,需要引入 n n + 1)/ 2辅助变量。使用通用SDP求解器时,这会导致较高的计算成本。提出了基于对偶和内点方法的更有效的实现。我们还将讨论涉及熵速率函数的优化问题。这种形式的问题出现在语音合成中的应用和估计问题中,并且涉及无限长的序列。我们描述了一种估计的应用,并开发了使用对偶性结果解决这些问题的有效方法。总而言之,我们演示了如何开发内点方法来利用SDP有用类中的结构。我们相信,在其他问题类别中,效率的类似提高也是可能的。

著录项

  • 作者

    Alkire, Brien Forrest.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.; Operations Research.; Mathematics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;运筹学;数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号