首页> 外文学位 >Hole mobility in strained germanium and vanadium-III p-channel inversion layers with self-consistent valence subband structure and high-k insulators.
【24h】

Hole mobility in strained germanium and vanadium-III p-channel inversion layers with self-consistent valence subband structure and high-k insulators.

机译:具有自洽价子带结构和高k绝缘体的应变锗和钒III p沟道反型层中的空穴迁移率。

获取原文
获取原文并翻译 | 示例

摘要

We present a comprehensive investigation of the low-field hole mobility in strained Ge and III-V (GaAs, GaSb, InSb and In1- xGaxAs) p-channel inversion layers with both SiO2 and high-kappa insulators. The valence (sub)band structure of Ge and III-V channels, relaxed and under strain (tensile and compressive) is calculated using an efficient self-consistent method based on the six-band k · p perturbation theory. The hole mobility is then computed using the Kubo-Greenwood formalism accounting for non-polar hole-phonon scattering (acoustic and optical), surface roughness scattering, polar phonon scattering (III-Vs only), alloy scattering (alloys only) and remote phonon scattering, accounting for multi-subband dielectric screening. As expected, we find that Ge and III-V semiconductors exhibit a mobility significantly larger than the "universal" Si mobility. This is true for MOS systems with either SiO2 or high-kappa insulators, although the latter ones are found to degrade the hole mobility compared to SiO2 due to scattering with interfacial optical phonons. In addition, III-Vs are more sensitive to the interfacial optical phonons than Ge due to the existence of the substrate polar phonons. Strain---especially biaxial tensile stress for Ge and biaxial compressive stress for III-Vs (except for GaAs)---is found to have a significant beneficial effect with both SiO2 and HfO2. Among strained p-channels, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress added on a Ge p-channel similarly to the well-known case of Si. InSb exhibits the largest mobility enhancement. In0.7Ga 0.3As also exhibits an increased hole mobility compared to Si, although the enhancement is not as large. Finally, our theoretical results are favorably compared with available experimental data for a relaxed Ge p-channel with a HfO2 insulator.
机译:我们对具有SiO2和高k绝缘子的应变Ge和III-V(GaAs,GaSb,InSb和In1-xGaxAs)p沟道反型层中的低场空穴迁移率进行了全面研究。 Ge和III-V通道的价(子)带结构,松弛和处于应变(拉伸和压缩)状态下,是基于六频带k·p微扰理论使用有效的自洽方法计算的。然后,使用Kubo-Greenwood形式主义计算空穴迁移率,其中考虑了非极性空穴-声子散射(声学和光学),表面粗糙度散射,极性声子散射(仅III-Vs),合金散射(仅合金)和远程声子散射,考虑了多子带介电屏蔽。不出所料,我们发现Ge和III-V半导体的迁移率显着大于“通用” Si迁移率。对于具有SiO2或高kappa绝缘体的MOS系统,这是正确的,尽管与SiO2相比,后者由于界面光子的散射而降低了空穴迁移率。另外,由于存在基底极性声子,因此III-Vs对界面光学声子比Ge更敏感。发现应变-特别是Ge的双轴拉伸应力和III-Vs(GaAs除外)的双轴压缩应力-对SiO2和HfO2都有明显的有益作用。在应变的p沟道中,我们发现,与众所周知的Si情况类似,在Ge p沟道上施加单轴压缩应力的情况下,迁移率有很大的提高(相对于Si高达10倍)。 InSb具有最大的移动性增强。与Si相比,In0.7Ga 0.3As的空穴迁移率也有所提高,尽管提高幅度不大。最后,我们的理论结果与具有HfO2绝缘体的弛豫Ge p沟道的可用实验数据进行了比较。

著录项

  • 作者

    Zhang, Yan.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号