首页> 外文学位 >Crystalline-Silicon/Organic Heterojunctions for Solar Photovoltaics.
【24h】

Crystalline-Silicon/Organic Heterojunctions for Solar Photovoltaics.

机译:太阳能光伏用硅晶/有机异质结。

获取原文
获取原文并翻译 | 示例

摘要

Solar cells based on crystalline silicon offer high efficiency but they are expensive due to the high temperatures required in their fabrication. The alternative approach using low-temperature processable organic-semiconductors is potentially cheaper, but the organic solar cells are not very efficient. In this thesis we explore if organic semiconductors can be integrated with silicon to form hybrid organic/silicon solar cells that are both efficient and low-cost. Specifically, we demonstrate that a) organic molecules can be used to reduce carrier recombination at the silicon (100) surface and b) a solution-processed organic/silicon heterojunction can replace the conventional silicon p-n junction to yield solar cells with high power conversion efficiencies (>10%).;With decreasing wafer thicknesses and improving bulk lifetimes of silicon solar cells, losses due to carrier recombination at the silicon surface are becoming increasingly important. At a bare silicon surface, some of the silicon valencies remain unsatisfied. These "dangling-bonds" cause midgap states at the silicon surface where photogenerated carriers can recombine, resulting in lower performance. Typically, a layer of silicon oxide/nitride is deposited on the silicon, at high-temperatures (>350°C), to passivate the dangling-bonds and reduce surface recombination. Organic semiconductors can be deposited at much lower temperatures, but in general organic materials do not react with the silicon dangling-bonds and the surface remains unpassivated. In this work, we demonstrate that the organic molecule 9,10 phenanthrenequinone (PQ) reacts with and satisfies the silicon dangling bonds, leading to a relatively defect-free silicon surface with a very low surface recombination velocity (150 cm/s). Electrical measurements of the metal/insulator/silicon devices show that the Fermi-level at the PQ-passivated silicon surface can be modulated and an inversion layer can be induced in silicon. High electron mobility of 600 cm²/Vs is measured at the Si/PQ interface further proving the electronic quality of the PQ-passivated surfaces.;To generate a photovoltage in a solar cell, the photogenerated carriers need to be spatially separated at two electrodes of opposite polarity. In solar cells this is typically accomplished using a p-n junction. While the p-n junction technology is well understood, the fabrication of p-n junctions on silicon is an expensive process because it requires ultra-clean furnaces, pure precursors and high temperatures. In this thesis we successfully replace the silicon p-n junction with an silicon/poly(3-hexylthiophene) heterojunction that can be manufactured at low temperatures (150°C) with a simple spin-coating process. The key design rules to achieve a high quantum-efficiency and high open-circuit voltage are discussed and experimentally demonstrated. Finally we highlight the importance of reducing minority-carrier currents in these heterojunction devices, which gives a pathway for further improving the efficiency of heterojunction solar cells. Using the prescribed design rules and optimizing device structure, a silicon/organic heterojunction solar cell with an open-circuit voltage of 0.59 V and power conversion efficiency of 10.1% is demonstrated.
机译:基于晶体硅的太阳能电池具有很高的效率,但由于制造过程中需要高温,因此价格昂贵。使用低温可加工有机半导体的替代方法可能更便宜,但有机太阳能电池的效率不是很高。在本文中,我们探讨了有机半导体是否可以与硅集成在一起以形成既高效又低成本的有机/硅混合太阳能电池。具体而言,我们证明了a)有机分子可用于减少硅(100)表面的载流子复合,并且b)溶液处理的有机/硅异质结可以替代常规的硅pn结,从而生产出具有高功率转换效率的太阳能电池(> 10%)。随着硅片厚度的减小和硅太阳能电池寿命的延长,由于硅表面载流子复合而造成的损耗变得越来越重要。在裸露的硅表面上,某些硅化合价仍不令人满意。这些“悬空键”在光生载流子可以复合的硅表面引起中间能隙状态,从而降低性能。通常,在高温(> 350°C)下,在硅上沉积一层氧化硅/氮化物,以钝化悬空键并减少表面重组。可以在低得多的温度下沉积有机半导体,但是通常有机材料不会与硅的悬空键反应,并且表面保持未钝化。在这项工作中,我们证明了有机分子9,10菲醌(PQ)与硅悬空键反应并满足其要求,从而导致相对无缺陷的硅表面具有非常低的表面重组速度(150 cm / s)。金属/绝缘体/硅器件的电学测量表明,可以对PQ钝化硅表面的费米能级进行调制,并且可以在硅中感应出反型层。在Si / PQ界面处测量到600cm²/ Vs的高电子迁移率,进一步证明了PQ钝化表面的电子质量。;要在太阳能电池中产生光电压,光生载流子需要在两个极性相反。在太阳能电池中,这通常使用p-n结完成。尽管人们很了解p-n结技术,但在硅上制造p-n结是一个昂贵的过程,因为它需要超净炉,纯前驱体和高温。在本文中,我们成功地用硅/聚(3-己基噻吩)异质结取代了硅p-n结,该异质结可以在低温(<150°C)下通过简单的旋涂工艺制造。讨论并通过实验证明了实现高量子效率和高开路电压的关键设计规则。最后,我们强调了减少这些异质结器件中少数载流子电流的重要性,这为进一步提高异质结太阳能电池的效率提供了途径。使用规定的设计规则和优化的器件结构,展示了具有0.59 V开路电压和10.1%的功率转换效率的硅/有机异质结太阳能电池。

著录项

  • 作者

    Avasthi, Sushobhan.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Alternative Energy.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号