首页> 外文学位 >Modeling the role of plating additives in the metallization of semiconductor interconnects: From dual damascene to through silicon vias.
【24h】

Modeling the role of plating additives in the metallization of semiconductor interconnects: From dual damascene to through silicon vias.

机译:建模电镀添加剂在半导体互连金属化中的作用:从双镶嵌到硅通孔。

获取原文
获取原文并翻译 | 示例

摘要

Metallization of semiconductor interconnects by copper electroplating has been the standard industry practice for over ten years. The technology hinges on a special plating additives mixture, formulated empirically, that enables bottom-up metallization. Further extensions of the technology, to dual damascene features smaller than 22 nm, and at the other extreme, to the more challenging, micron scale, through silicon vias (TSV's), hinge on the ability to quantitatively model and optimize the process. The goal of this work is to provide a straightforward, predictive model that applies to the metallization by plating on all feature scales, which will enable the optimization and extension of the process. A critical analysis of the TSV fill process is carried out, focusing on the challenges and differences in scaling from the dual-damascene nanoscale process. A comprehensive and predictive model for the bottom up plating, taking into account additives and copper transport, time-dependent competitive adsorption of the additives including their effect on the plating process, and the effect of the changing geometry and surface area due to plating, has been developed. Limitations associated with the widely varying scales are critically analyzed and corrections to the model accounting for transport limitations of both additives and copper in the relatively large TSV scale are provided.;The utilization of the model to provide optimal additives concentrations for bottom-up fill of dual damascene scale features is demonstrated. Further, a model for the critical influence of a special class of nitrogen-based additives (the so-called 'levelers') on TSV's fill is provided. Analytical treatment of migration effects due to the electrical field on ionic transport in stagnant media for general electrochemical systems is provided. Application of this analysis to the bottom-up fill process indicates that the copper transport limitations and depletion are far more significant than the ohmic effects, and hence, particularly in larger features such as those encountered in TSV's, the use of supporting electrolyte should be minimized. A method is developed to experimentally determine the multiple, coupled additive parameters required for the application of the model, and a systematic approach for the screening of additives expected to provide superior fill is provided. A millifluidics experimental systems was developed that automates this analysis and provides superior experimental data. Commonly used additives (Polyethylene glycol (PEG), a plating suppressor, and bis-(3-sulfopropyl) disulfide (SPS), a plating accelerator) were analyzed and their adsorption and transport parameters determined. Throughout the thesis, a complete fill model is developed as well as the necessary tools to characterize and screen additives in order to achieve void free bottom-up fill in TSVs.
机译:十多年来,通过铜电镀对半导体互连件进行金属化一直是标准的行业惯例。该技术取决于根据经验配制的特殊电镀添加剂混合物,该混合物可以实现自下而上的金属化。该技术的进一步扩展到小于22 nm的双大马士革功能,而在另一个极端,通过硅通孔(TSV)达到更具挑战性的微米级,取决于对模型进行定量建模和优化的能力。这项工作的目标是提供一个直接的,可预测的模型,该模型适用于通过在所有特征尺度上进行电镀进行的金属化,这将使过程得以优化和扩展。对TSV填充工艺进行了批判性分析,重点关注了双镶嵌纳米工艺规模的挑战和规模差异。考虑到添加剂和铜的运输,添加剂随时间的竞争性吸附(包括其对电镀过程的影响以及由于电镀引起的几何形状和表面积变化的影响)的综合性和预测性模型,该模型具有以下特征:已开发。严格分析了与范围广泛变化的规模相关的局限性,并对模型进行了校正,以考虑到添加剂和铜在较大的TSV规模中的迁移限制。;利用模型为自下而上填充提供最佳添加剂浓度演示了双重镶嵌尺度特征。此外,提供了一种特殊类型的氮基添加剂(所谓的“整平剂”)对TSV填充物的关键影响的模型。对于常规电化学系统,提供了由于电场对停滞介质中离子迁移的迁移影响的分析处理。将此分析应用于自下而上的填充过程表明,铜的传输限制和耗损远比欧姆效应更为重要,因此,特别是在诸如TSV所遇到的较大特征中,应尽量减少使用支持电解质。开发了一种方法来通过实验确定应用该模型所需的多个耦合的添加剂参数,并提供了一种系统的方法,用于筛选有望提供优异填充性能的添加剂。开发了一种毫流体实验系统,该系统可自动执行此分析并提供出色的实验数据。分析了常用的添加剂(聚乙二醇(PEG),镀层抑制剂和双-(3-磺丙基)二硫化物(SPS),镀层促进剂),并确定了它们的吸附和传输参数。在整个论文中,开发了完整的填充模型以及表征和筛选添加剂的必要工具,以实现TSV中无空的自底向上填充。

著录项

  • 作者

    Adolf, James David.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 364 p.
  • 总页数 364
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号