首页> 外文学位 >Poly(ethylene oxide)/layered-inorganic nanocomposites: A molecular modeling perspective.
【24h】

Poly(ethylene oxide)/layered-inorganic nanocomposites: A molecular modeling perspective.

机译:聚环氧乙烷/层状无机纳米复合材料:分子建模的观点。

获取原文
获取原文并翻译 | 示例

摘要

Molecular Dynamics computer simulations are used to investigate the structure and dynamics of nanoscopically confined polymers intercalated in tayered-inorganic hosts to form nanocomposites. The focus of this research is on understanding how the nature of the organic film is influenced not only by the severe confinement, but also by the interactions of the organic film with lithium counterions present in the slit pore.; Molecular Dynamics simulations are performed using atomistically detailed models for interactions between various species in the system; the simulation setup and potentials used mimic the experimental system of poly (ethylene oxide) confined between mica-type montmorillonite clays, i.e. 2:1 alumino-silicates. The force fields employed were well tested in earlier simulations of Li+/PEO interactions, and in studies of PEO/Montmorillonite nanocomposites.; Simulations were also performed on bulk polymer to comparatively contrast the differences in behavior between bulk and confined PEO. For the bulk Li +/PEO system, it is seen that there is a drastic change in the structure as explored by three different order parameters, at a temperature close to the melting point of bulk PEO. In sharp contrast, the structure of confined PEO exhibits no dramatic qualitative change with temperature. Instead there is only a gradual quantitative difference in the structural ordering, which reveals that the confined organic film exists in the same amorphous state throughout the temperature range of study.; In addition to the structure, the dynamics of the confined systems are markedly different from what one would normally expect for a regular composite. Unlike the bulk system, which exhibits clear solid-like and liquid-like polymer motion below and above the experimental melting point of PEO, there seems to be no distinct change in dynamics of the confined polymer as probed experimentally by 2H NMR. This anomalous behavior was reproduced in our simulations, and the coexistence of fast and slow relaxation times for C-H bond reorientations was attributed to the presence of adjacent Li+, density inhomogeneities that were stabilized in the confinement, and enhanced translational motion at all temperatures. Finally, the temperature dependence of Li+ diffusion in bulk PEO shows two distinct mechanisms of motion, for regions below and above the melting point of the polymer. For the nanocomposite, a single mechanism for lithium ion transport at all temperatures was identified. It is revealed that enhanced polymer dynamics in the confinement are responsible for the higher diffusion coefficient for Li+ in PEO/MMT compared to bulk PEO, at lower temperatures.
机译:分子动力学计算机模拟用于研究插层无机无机物中形成纳米复合材料的纳米受限聚合物的结构和动力学。这项研究的重点是了解有机膜的性质不仅受到严格限制的影响,而且还受到有机膜与缝隙孔中存在的锂抗衡离子相互作用的影响。分子动力学模拟是使用原子详细模型对系统中各种物质之间的相互作用进行的;模拟装置和使用的电势模拟了限制在云母型蒙脱石粘土(即2:1铝硅酸盐)之间的聚环氧乙烷的实验系统。所用的力场在Li + / PEO相互作用的早期模拟以及PEO /蒙脱土纳米复合材料的研究中得到了很好的测试。还对本体聚合物进行了模拟,以比较对比本体和密闭PEO之间的行为差​​异。对于本体Li + / PEO系统,可以看到,在接近本体PEO熔点的温度下,通过三个不同的有序参数所探索的结构发生了巨大变化。与之形成鲜明对比的是,密闭PEO的结构没有随温度变化而出现明显的质变。取而代之的是,结构顺序仅存在逐渐的数量差异,这表明在整个研究温度范围内,受限的有机膜都以相同的非晶态存在。除了结构之外,密闭系统的动力学特性与常规复合材料通常所期望的显着不同。与本体体系不同,本体体系在PEO的实验熔点上下均表现出明显的固体和液体状聚合物运动,通过2 H NMR实验发现,封闭聚合物的动力学似乎没有明显变化。这种异常行为在我们的模拟中得以再现,并且C-H键重新定向的快速和慢弛豫时间并存是由于存在相邻的Li +,在限制条件下稳定的密度不均匀性以及在所有温度下均增强了平移运动。最后,对于聚合物熔点以下和以上的区域,本体PEO中Li +扩散的温度依赖性显示出两种不同的运动机理。对于纳米复合材料,确定了在所有温度下锂离子迁移的单一机制。结果表明,在较低的温度下,与本体PEO相比,提高的聚合物动力学限制了PEO / MMT中Li +的扩散系数。

著录项

  • 作者

    Kuppa, Vikram Krishna.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号