首页> 外文学位 >Gallium arsenide-based microcoolers and self-cooled laser structure.
【24h】

Gallium arsenide-based microcoolers and self-cooled laser structure.

机译:基于砷化镓的微冷却器和自冷激光结构。

获取原文
获取原文并翻译 | 示例

摘要

Two types of GaAs-based microcoolers have been demonstrated for the first time. One has a 2 μm thermal barrier made from a 100-period Al0.10 Ga0.90As - Al0.20Ga0.80As superlattice. Another has a thermal barrier made from a 5.2 μm Al0.10Ga 0.90As layer. Microcoolers of these two types with a size of 60 μm x 60 μm show maximum cooling temperatures around 0.8°C and 2°C at heatsink temperatures of 25°C and 100°C respectively. The microcoolers have potential to provide in situ cooling for semiconductor devices.; As an application of in situ cooling, a unipolar self-cooled laser structure is proposed and has been fabricated. The structure integrates a graded-index (GRIN) separate confining heterostructure (SCH) strained-layer InGaAs quantum well (QW) laser unit and a single-layer AlGaAs cooler using an Esaki tunnel junction as a connector. In this scheme, cooling exists on two sides of the tunnel junction. Broad-area lasers of this structure with a cavity length of 500 μm have an average threshold current density around 212 A/cm 2. A preliminary method is proposed to evaluate the cooling effect of the integrated cooler. With this method, cooling can be estimated from the movement of the spectrum of the laser, excited by pulsed current, as the pulse width varies. Using this method, potential 2∼4°C temperature reduction as a result of the integrated cooler is found in the active layer of the self-cooled laser.; Some technological platforms have been built-up to support the investigations on the microcoolers and self-cooled laser structure. Firstly, some primary MOCVD technologies such as controlling compositions, fabricating high quality interfaces, and doping have been developed for the MOCVD system itself and the compound semiconductor group. Secondly, annealing parameters—temperature and time—have been optimized for making ohmic contacts in a homemade carbon-stripe furnace. Thirdly, the SiH4 flow rate for doping the n-side of GaAs tunnel junction has been optimized to obtain a tunnel junction with low zero-bias tunnel resistance. A low zero-bias specific tunnel resistance of 9.59 × 10−5 Ω·cm2 has been achieved, which is the best reported result for the tunnel junction grown at normal growth temperatures. Theoretical evaluation and experimental results indicate that tunneling of the tunnel junction with the n-side doped with optimal SiH4 flow rate is mainly defect-assisted. Finally, a nominal-980-nm In0.2Ga0.8As GRIN-SCH strained-layer QW laser has been grown, fabricated, and characterized.
机译:首次展示了两种基于GaAs的微冷却器。一种具有2μm的热障,该热障由100周期的Al 0.10 Ga 0.90 As-Al 0.20 Ga 0.80 作为超晶格。另一个具有由5.2μmAl 0.10 Ga 0.90 As层制成的隔热层。这两款尺寸为60μmx 60μm的微型冷却器在散热器温度分别为25°C和100°C时显示的最高冷却温度分别约为0.8°C和2°C。微型冷却器具有为半导体器件提供就地冷却的潜力。作为原位冷却的一种应用,提出并制造了一种单极自冷激光器结构。该结构使用Esaki隧道结作为连接器,集成了梯度折射率(GRIN)分离限制异质结构(SCH)应变层InGaAs量子阱(QW)激光器单元和单层AlGaAs冷却器。在该方案中,冷却存在于隧道结的两侧。这种结构的腔体长度为500μm的广域激光器的平均阈值电流密度约为212 A / cm 2 。提出了一种评估集成冷却器冷却效果的初步方法。使用这种方法,随着脉冲宽度的变化,可以从被脉冲电流激发的激光光谱的运动估计冷却。使用这种方法,在自冷激光器的有源层中,由于集成了冷却器,导致温度可能降低2-4℃。已经建立了一些技术平台来支持对微冷却器和自冷激光器结构的研究。首先,已经为MOCVD系统本身和化合物半导体组开发了一些主要的MOCVD技术,例如控制成分,制造高质量的界面和掺杂。其次,退火参数(温度和时间)已经过优化,可以在自制的碳带剥离炉中进行欧姆接触。第三,对掺杂GaAs隧道结n侧的SiH 4 流速进行了优化,以得到低零偏压隧道电阻的隧道结。零偏偏压隧道电阻已达到9.59×10 −5 Ω·cm 2 ,这是正常生长的隧道结的最佳记录结果。温度。理论评估和实验结果表明,掺杂SiH 4 最佳流量的n侧隧道结的隧穿主要是缺陷辅助。最终,生长,制造和表征了标称980nm In 0.2 Ga 0.8 As GRIN-SCH应变层QW激光器。

著录项

  • 作者

    Zhang, Jizhi.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号