首页> 外文学位 >Design optimization of ultra-scaled transistors and the impact of process variations.
【24h】

Design optimization of ultra-scaled transistors and the impact of process variations.

机译:超大规模晶体管的设计优化和工艺变化的影响。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the effects of gate line edge roughness (LER) in short-channel MOSFETs and addresses issues in design optimization of symmetric ultra-thin double-gate transistors.; Poly-silicon gate LER is a process-induced variation of increasing concern for ultra-scaled MOSFETs. It causes variations in device gate length along its width and induces local CD (average gate length) spread. Because roughness is transferred to source/drain (S/D) to channel junctions by self-aligned implants, which is also subjected to modification of implantation scattering and dopant diffusion, the off-state current (IOFF) is particularly sensitive and increases significantly with gate LER. Depending on the spatial-frequency properties, estimating the LER effect on the IOFF requires either two-dimensional (2D) or three-dimensional (3D) device simulations. High frequency (HF) and low frequency (LF) LER affect S/D-channel junctions differently. 3D process simulations predict enhanced lateral diffusion and additional channel shortening for HF LER. The use of a scanning electron microscope (SEM) allows the characterization of poly-silicon LER on wafers. The correlation lengths are found around 30nm. Modest IOFF degradation is demonstrated on NMOS devices with significantly raised gate LER in controlled experiments.; The advantages of the symmetric ultra-thin body double-gate (SUTBDG) configuration make it a strong candidate for future MOSFET structures in low power applications, in spite of several remaining challenges. The device is sensitive to body thickness variations. Extrinsic parasitics limit device performance. They can be modeled analytically in 2D. The S/D structures can be optimized for maximum switching speed by trading-off the parasitics. With a fully controlled gate work function, we can take advantages of weakly-coupling S/D structures and relatively thicker bodies. Suppressing the fringing field induced barrier lowering effect caused by using of high-k gate dielectric requires significant equivalent oxide thickness (EOT) reduction or gate work function shift. Metal S/D SUTBDG devices behave differently from doped S/D devices due to their special transport mechanisms through S/D Schottky contacts. By considering the effects of parasitics, we predict that sub-100meV S/D Schottky barrier heights (SBHs) are required for metal S/D devices with gate lengths around 20nm to outperform doped S/D devices with similar dimensions.
机译:本文研究了栅极沟道边缘粗糙度(LER)在短沟道MOSFET中的影响,并解决了对称超薄双栅极晶体管设计优化中的问题。多晶硅栅极LER是工艺引起的变化,对超大规模MOSFET的关注日益增加。它会导致器件栅极长度沿其宽度变化,并引起局部CD(平均栅极长度)扩散。由于粗糙度是通过自对准注入转移到源极/漏极(S / D)到沟道结的,这也需要对注入散射和掺杂剂扩散进行修改,因此截止态电流(IOFF)特别敏感,并且随着门LER。取决于空间频率特性,估计LER对IOFF的影响需要二维(2D)或三维(3D)器件仿真。高频(HF)和低频(LF)LER对S / D通道结的影响不同。 3D过程仿真预测HF LER的横向扩散增强,通道缩短。扫描电子显微镜(SEM)的使用可以表征晶圆上的多晶硅LER。相关长度在30nm左右。在受控实验中,在栅极LER显着提高的NMOS器件上证明了适度的IOFF降低。尽管仍然存在一些挑战,但对称超薄体双栅(SUTBDG)配置的优点使其成为低功耗应用中未来MOSFET结构的理想选择。该设备对人体厚度变化敏感。外在寄生效应限制了器件性能。可以用2D进行解析建模。通过权衡寄生因素,可以优化S / D结构以获得最大的开关速度。通过完全控制的门功功能,我们可以利用弱耦合S / D结构和相对较厚的主体的优势。要抑制由使用高k栅极电介质引起的边缘场引起的势垒降低效应,就需要大幅降低等效氧化物厚度(EOT)或降低栅极功函数。金属S / D SUTBDG器件的行为与掺杂S / D器件不同,这是由于它们通过S / D肖特基触点的特殊传输机制。通过考虑寄生效应,我们预测栅长约为20nm的金属S / D器件需要低于100meV的S / D肖特基势垒高度(SBHs)才能胜过具有相似尺寸的掺杂S / D器件。

著录项

  • 作者

    Xiong, Shiying.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号