首页> 外文学位 >Maximum likelihood estimation applied to multiepoch MEG/EEG analysis.
【24h】

Maximum likelihood estimation applied to multiepoch MEG/EEG analysis.

机译:适用于多时间段MEG / EEG分析的最大似然估计。

获取原文
获取原文并翻译 | 示例

摘要

A maximum likelihood based algorithm for reducing the effects of spatially colored noise in evoked response MEG and EEG experiments is presented. The signal of interest is modeled as the low rank mean, while the noise is modeled as a Kronecker product of spatial and temporal covariance matrices. The temporal covariance is assumed known, while the spatial covariance is estimated as part of the algorithm. In contrast to prestimulus based whitening followed by principal component analysis, our algorithm does not require signal-free data for noise whitening and thus is more effective with non-stationary noise and produces better quality whitening for a given data record length. The efficacy of this approach is demonstrated using simulated and real MEG data.; Next, a study in which we characterize MEG cortical response to coherent vs. incoherent motion is presented. It was found that coherent motion of the object induces not only an early sensory response around 180 ms relative to the stimulus onset but also a late field in the 250--500 ms range that has not been observed previously in similar random dot kinematogram experiments. The late field could not be resolved without signal processing using the maximum likelihood algorithm. The late activity localized to parietal areas. This is what would be expected. We believe that the late field corresponds to higher order processing related to the recognition of the moving object against the background.; Finally, a maximum likelihood based dipole fitting algorithm is presented. It is suitable for dipole fitting of evoked response MEG data in the presence of spatially colored noise. The method exploits the temporal multiepoch structure of the evoked response data to estimate the spatial noise covariance matrix from the section of data being fit, eliminating the stationarity assumption implicit in prestimulus based whitening approaches. The preliminary results of the application of this algorithm to the simulated data show its robustness to relatively high levels of noise. The bootstrap technique was used to assess the effectiveness of the algorithm on real data.
机译:提出了一种基于最大似然性的算法,用于减少诱发反应的MEG和EEG实验中空间彩色噪声的影响。感兴趣的信号建模为低秩均值,而噪声建模为空间和时间协方差矩阵的Kronecker乘积。假定时间协方差是已知的,而空间协方差作为算法的一部分进行估计。与基于激励的白化后再进行主成分分析相比,我们的算法不需要用于噪声白化的无信号数据,因此对于非平稳噪声更有效,并且对于给定的数据记录长度,可以产生更好的质量白化。使用模拟的和实际的MEG数据证明了这种方法的有效性。接下来,提出了一项研究,其中我们表征了MEG皮质对相干运动与非相干运动的反应。发现对象的相干运动不仅会引起相对于刺激发作的180 ms左右的早期感觉反应,而且还会引起250--500 ms范围内的后期感觉,这是以前在类似的随机点运动图实验中未观察到的。如果没有使用最大似然算法进行信号处理,则无法解决后场问题。晚期活动局限于顶叶区域。这是可以预期的。我们认为,晚场对应于与在背景下识别运动物体有关的高阶处理。最后,提出了一种基于最大似然的偶极拟合算法。它适用于在存在空间彩色噪声的情况下诱发反应的MEG数据的偶极拟合。该方法利用诱发的响应数据的时间多周期结构从适合的数据部分估计空间噪声协方差矩阵,从而消除了基于激励的白化方法所隐含的平稳性假设。该算法应用于模拟数据的初步结果表明,该算法对较高噪声水平具有鲁棒性。自举技术用于评估该算法对真实数据的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号