首页> 外文学位 >Some studies of routing and signal processing in sensor networks.
【24h】

Some studies of routing and signal processing in sensor networks.

机译:对传感器网络中的路由和信号处理的一些研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on selected topics in signal processing and communications for wireless networked system. Specifically, we investigate three problems of interest: the impacts of route discovery on the capacity of wireless networks, energy efficient detection and estimation in wireless sensor networks, and the detection performance of a network of radar sensors in non-Gaussian noise-plus-clutter.;The lack of infrastructure inherent to wireless ad hoc networks leads to the problem of distributed route discovery and maintenance. We introduce an analytical model and perform a quantitative analysis of the route discovery process (RDP) in wireless ad hoc networks. Bounds on RDP performance in terms of pertinent system parameters are determined. We apply our analytical RDP model to specific system models and compare analytical results with those obtained by numerical simulations. Our results give insight into the sustainable level of RDP in an ad hoc network.;Throughput capacity of large ad hoc networks has been shown to scale adversely with the size of network n. However the need for the nodes to find or repair routes has not been analyzed in this context. We explicitly take route discovery into account and obtain the scaling law for the throughput capacity under general assumptions on the network environment, node behavior, and the quality of route discovery algorithms. We also discuss a number of possible scenarios and show that the need for route discovery may change the scaling for the throughput capacity.;Significant research efforts have attempted to improve the energy efficiency of the information processing in wireless sensor networks (WSNs). We study energy efficient sensor selection for target detection in WSNs under the Neyman-Pearson criterion, and in particular, we acknowledge the unreliability of connections. We propose two sensor selection schemes which attempt to minimize the total energy consumption for the desired detection performance. Optimization problems are formulated for both schemes, and we show that slightly suboptimal solutions can be found by a low complexity greedy approach. Simulation results demonstrate that the proposed schemes achieve a better energy efficiency than a scheme where sensors closest to the location of interest are selected.;We also consider energy efficient estimation of an unknown scalar parameter in Gaussian noise in a sensor network, and discuss a new energy-efficient approach to obtain an approximate of Maximum likelihood (ML) estimate. In our approach, sensor transmissions are ordered according to the magnitude of measurements. Sensors with large magnitude measurements will transmit earlier, and those with small magnitude measurements, smaller than a threshold, will not transmit. Compared to the ML estimate, our approach saves energy by reducing the number of sensor transmissions. We also derive a bound on the approximation error which can be utilized to dynamically determine the threshold such that an appropriate trade-off between the energy savings and the accuracy of approximation can be maintained. Numerical results show that our approach can be very energy efficient with only a negligible error introduced.;Many previous investigations of MIMO radar focused on cases with Gaussian noise-plus-clutter. In particular, the optimum detector for this case, called the Gaussian detector here, has been well-established. The performance of the Gaussian detector in cases with non-Gaussian noise-plus-clutter has received much less attention. In this paper, we evaluate the detection performance of the Gaussian detector under non-Gaussian noise-plus-clutter for a non-coherent MIMO radar system. Two different classes of statistical models of non-Gaussian noise-plus-clutter are employed: one employing the generalized Rayleigh distributed envelope distribution with uniform distributed phase, and the other employing the complex spherically invariant random vector (SIRV) distribution. Simulations are carried out which illustrate the receiver operating characteristics (ROCs) and miss probability versus SNR curves of the Gaussian detector in a non-Gaussian environment. The impacts of the numbers of antennas and the SNR are also investigated. The results show that non-Gaussian noise-plus-clutter has no impact on the diversity gain of a MIMO radar system although it degrades the detection performance in some other ways. We also verify some known results on the optimality of the Gaussian detector for SIRV noise-plus-clutter models, while showing this optimality does not generally hold true for non-SIRV models.
机译:本文主要研究无线网络系统信号处理和通信中的选定主题。具体而言,我们研究了三个有趣的问题:路由发现对无线网络容量的影响,无线传感器网络中的能效检测和估计以及非高斯噪声加杂波中雷达传感器网络的检测性能。无线自组织网络固有的基础设施的缺乏导致分布式路由发现和维护的问题。我们介绍一种分析模型,并对无线自组网中的路由发现过程(RDP)进行定量分析。确定有关系统参数方面的RDP性能界限。我们将分析的RDP模型应用于特定的系统模型,并将分析结果与通过数值模拟获得的结果进行比较。我们的结果提供了对ad hoc网络中RDP可持续水平的见解。大型ad hoc网络的吞吐能力已显示出与网络n的规模成反比。但是,在这种情况下,尚未分析节点查找或修复路由的需求。在网络环境,节点行为和路由发现算法质量的一般假设下,我们明确考虑了路由发现并获得了吞吐能力的缩放定律。我们还讨论了许多可能的情况,并表明对路由发现的需求可能会改变吞吐量的缩放比例。;大量研究工作已尝试提高无线传感器网络(WSN)中信息处理的能效。我们研究根据Neyman-Pearson准则在WSN中进行目标检测的高能效传感器选择,尤其是,我们承认连接的不可靠性。我们提出了两种传感器选择方案,这些方案试图将所需的检测性能的总能耗降至最低。针对这两种方案都提出了优化问题,并且我们表明可以通过低复杂度贪婪方法找到次优解决方案。仿真结果表明,与选择最接近感兴趣位置的传感器相比,该方案具有更高的能效。我们还考虑了传感器网络中高斯噪声中未知标量参数的能效估计,并讨论了一种新的方案。节能方法来获取最大似然(ML)估计值的近似值。在我们的方法中,传感器传输根据测量的大小排序。具有大幅度测量的传感器将更早发送,而具有小幅度测量的传感器(小于阈值)将不发送。与ML估计相比,我们的方法通过减少传感器传输的数量来节省能源。我们还推导了近似误差的界限,该界限可用于动态确定阈值,从而可以在节能与近似精度之间保持适当的权衡。数值结果表明,该方法具有很高的能源效率,且引入的误差可忽略不计。以前许多关于MIMO雷达的研究都集中在高斯噪声加杂波的情况下。特别地,针对这种情况的最佳检测器,在这里被称为高斯检测器,已经被很好地建立。在具有非高斯噪声加杂波的情况下,高斯检测器的性能受到的关注要少得多。在本文中,我们评估了非相干MIMO雷达系统在非高斯噪声加杂波下的高斯检测器的检测性能。使用两类不同的非高斯噪声加杂波统计模型:一种采用具有均匀分布相位的广义瑞利分布包络分布,另一种采用复数球不变随机矢量(SIRV)分布。进行了仿真,这些仿真说明了在非高斯环境中高斯检测器的接收机工作特性(ROC)以及未命中概率与SNR曲线。还研究了天线数量和SNR的影响。结果表明,非高斯噪声加杂波对MIMO雷达系统的分集增益没有影响,尽管它以其他方式降低了检测性能。我们还验证了关于SIRV噪声加杂波模型的高斯检测器最优性的一些已知结果,同时表明这种最优性通常不适用于非SIRV模型。

著录项

  • 作者

    Chen, Xun.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号