首页> 外文学位 >Towards integrating chalcogenide based phase change memory with silicon microelectronics.
【24h】

Towards integrating chalcogenide based phase change memory with silicon microelectronics.

机译:致力于将基于硫族化物的相变存储器与硅微电子技术集成在一起。

获取原文
获取原文并翻译 | 示例

摘要

The continued dominance of floating gate technology as the premier non-volatile memory (NVM) technology is expected to hit a roadblock due to issues associated with its inability to catch up with CMOS scaling. The uncertain future of floating gate memory has led to a host of unorthodox NVM technologies to surface as potential heirs. Among the mix is phase change memory (PCM), which is a non-volatile, resistance variable, memory technology wherein the state of the memory bit is defined by the resistance of the memory material. This research study examines novel, bilayer chalcogenide based materials composed of Ge-chalcogenide (GeTe or Ge2Se3) and Sn-chalcogenide (SnTe or SnSe) for phase change memory applications and explores their integration with CMOS technology. By using a layered arrangement, it is possible to induce phase change response in materials, which normally do not exhibit such behavior, and thus form new materials which may have lower threshold voltage and programming current requirements. Also, through the incorporation of a metal containing layer, the phase transition characteristics of the memory layer can be tailored in order to obtain in-situ, a material with optimized phase change properties. Using X-ray diffraction (XRD) and time resolved XRD, it has been demonstrated that stacked phase change memory films exhibit both structural and compositional dependency with annealing temperature. The outcome of the structural transformation of the bottom layer, is an annealing temperature dependent residual stress. By the incorporation of a Sn layer, the phase transition characteristics of Ge-chalcogenide thin films can be tuned. Clear evidence of thermally induced Ge, Sn and chalcogen inter-diffusion, has been discerned via transmission electron microscopy and parallel electron energy loss spectroscopy. The presence of Al2O3 as capping layer has been found to mitigate volatilization and metallic Sn phase separation at high temperatures. Two terminal PCM cells employing these bilayers have been designed, fabricated and tested. All devices exhibit threshold switching and memory switching behavior. By the application of suitable voltage programming pulses, RESET state switching can be accomplished in these devices, thus demonstrating single bit memory functionality. A process for integrating bilayer PCM technology with 2 mum CMOS has been designed and developed. The baseline RIT CMOS process has been modified to incorporate 12 levels of photolithography, 3 levels of metal and the addition of PCM as a BEOL process. On electrical testing, NMOS connected PCM devices exhibit switching behavior. The effect of the state (SET/RESET) of the series connected PCM cell on the drain current of the NMOS has also been investigated. It is determined that threshold switching of the PCM cell is essential in order to observe any change in MOS drain current with variation in drain voltage. Thus, successful integration of bilayer PCM with CMOS has been demonstrated.
机译:由于与无法满足CMOS缩放相关的问题,作为主要的非易失性存储器(NVM)技术的浮栅技术将继续占据主导地位。浮栅存储器的前途未卜,导致许多非传统的NVM技术成为潜在的继承者。混合中有相变存储器(PCM),它是一种非易失性的可变电阻存储技术,其中存储位的状态由存储材料的电阻定义。这项研究研究了新型的基于硫族化物的双层材料,该材料由Ge-硫族化物(GeTe或Ge2Se3)和Sn-硫族化物(SnTe或SnSe)组成,用于相变存储应用,并探索了它们与CMOS技术的集成。通过使用分层布置,可以在通常不表现出这种行为的材料中引起相变响应,从而形成可能具有较低阈值电压和编程电流要求的新材料。而且,通过结合含金属的层,可以调整存储层的相变特性,以便就地获得具有最佳相变特性的材料。使用X射线衍射(XRD)和时间分辨XRD,已经证明堆叠的相变存储膜在退火温度下表现出结构和成分依赖性。底层结构转变的结果是取决于退火温度的残余应力。通过掺入Sn层,可以调整Ge硫属化物薄膜的相变特性。通过透射电子显微镜和平行电子能量损失谱可以清楚地看出热诱导的锗,锡和硫族元素相互扩散的证据。已经发现Al 2 O 3作为覆盖层的存在减轻了高温下的挥发和金属Sn相分离。已经设计,制造和测试了使用这些双层的两个终端PCM单元。所有设备都具有阈值切换和存储器切换行为。通过施加适当的电压编程脉冲,可以在这些设备中完成RESET状态切换,从而证明了单位存储功能。已经设计和开发了将双层PCM技术与2毫米CMOS集成的工艺。已对基线RIT CMOS工艺进行了修改,以合并12层光刻,3层金属和添加PCM作为BEOL工艺。在电气测试中,与NMOS连接的PCM设备显示出开关行为。还研究了串联的PCM单元的状态(SET / RESET)对NMOS漏极电流的影响。为了观察随着漏极电压变化的MOS漏极电流的任何变化,已确定PCM单元的阈值切换是必不可少的。因此,已经证明了双层PCM与CMOS的成功集成。

著录项

  • 作者

    Devasia, Archana.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号