首页> 外文学位 >Tackling Nanoscale IC Failures through Noise-aware Testing and Silicon Debugging.
【24h】

Tackling Nanoscale IC Failures through Noise-aware Testing and Silicon Debugging.

机译:通过噪声感知测试和芯片调试来解决纳米级IC故障。

获取原文
获取原文并翻译 | 示例

摘要

The continued device scaling trend and the aggressive integrated circuit design style have shifted the major device failure mechanism from stuck-at fault types to marginal failures induced by timing uncertainty and signal noise. The production test methodologies currently employed by industry, however, are still based on the traditional structural test schemes that focus on the detection of permanent defects, failing to account for emerging failure mechanisms in nanometer scale designs. The inability of current test methodologies in adapting to the failure mechanism shift imposes critical challenges to the IC providers, mainly observed as significant product quality degradation and yield loss. To make things worse, the marginal failures result in highly ambiguous failure syndromes, invalidating traditional assumptions employed in silicon debugging. The degraded test quality and yield, combined with inaccurate failure diagnosis, lead to a lengthened design-fabrication-debugging cycle needed for ramping up the yield and quality for final production, significantly slowing down the time-to-market and boosting the overall product cost.;Maintaining high quality yet low cost production test for nanometer scale integrated circuits necessitates a comprehensive examination of marginal failure scenarios while minimizing yield loss. Reducing the time-to-market cycle relies on an accurate identification of marginal failure locations and causalities to pinpoint the design and fabrication weaknesses that have gross quality impact. The challenges, though, are the resolution to the paradox between overscreening and underscreening that are simultaneously taking place in today's industrial testing practice, and the extraction of sensible diagnostic signals from highly ambiguous fault behaviors of marginal failures. The presented thesis work overcomes these challenges through the proposition of an innovative marginal failure aware test and diagnosis scheme, capable of thoroughly targeting the functional mode failure scenarios with a low cost structural test platform and the accurate identification of failure-induced feature change in large volume test data. A comprehensive production ramp-up flow, constructed based on the proposed test and diagnosis schemes, is furthermore presented to guide the silicon debugging, test optimization, and yield/quality learning activities, so as to minimize the time-to-market.;From a technical point of view, this thesis work analyzes the power ground noise in functional and testing modes and its impact on circuit timing robustness, with a focus on the differentiation of the functional mode timing failures from the pure testing mode ones, thus enabling a clear decomposition of the noise treatment strategies for different operation scenarios. A set of tightly-coupled approaches, including 1) noise resilience in testing related circuitry for overscreening minimization, 2) approximation of worst-case functional mode noise in structural testing for marginal timing failure detection, and 3) diagnosis of noise-induced timing failure diagnosis in scan paths and scan clock trees for design optimization, are presented to attain the overall goal of high yield, low test escape rate, and fast silicon re-spin. These techniques are developed with the consideration of enabling a seamless adaptation of industrial flows by delivering maximal compatibility to mainstream design-for-testability architectures and testing platforms employed in nanometer scale designs. The successful incorporation of these techniques will significantly expedite the silicon production ramp-up process with highly reduced risk and cost.
机译:持续的器件缩放趋势和激进的集成电路设计风格已将主要的器件故障机制从卡住的故障类型转变为由时序不确定性和信号噪声引起的边缘故障。然而,当前工业上采用的生产测试方法仍基于传统的结构测试方案,该方案侧重于永久性缺陷的检测,未能解决纳米级设计中出现的失效机制。当前的测试方法无法适应故障机制的转变,给IC供应商带来了严峻的挑战,主要表现为产品质量显着下降和成品率下降。更糟的是,边际故障会导致高度模棱两可的故障综合症,从而使硅调试中使用的传统假设无效。测试质量和成品率下降,加上错误的故障诊断,导致设计制造调试周期延长,从而增加了最终产品的成品率和质量,大大缩短了产品上市时间并提高了整体产品成本为纳米级集成电路维持高质量,低成本的生产测试,必须全面检查边际故障情况,同时将成品率损失降至最低。缩短上市时间取决于准确识别边缘故障的位置和原因,以查明对质量有重大影响的设计和制造缺陷。然而,挑战在于如何解决当今工业测试实践中同时发生的过筛和欠筛之间的悖论,以及从边缘故障的高度模棱两可的故障行为中提取明智的诊断信号。提出的论文工作通过提出一种创新的边缘故障感知测试和诊断方案来克服这些挑战,该方案能够通过低成本的结构测试平台彻底针对功能模式故障场景,并准确识别大量故障引起的特征变化测试数据。此外,还基于建议的测试和诊断方案构建了全面的生产加速流程,以指导芯片调试,测试优化和良率/质量学习活动,从而最大程度地缩短产品上市时间。从技术角度来看,本文的工作是分析功能和测试模式下的电源接地噪声及其对电路时序鲁棒性的影响,重点在于将功能模式时序故障与纯测试模式故障区别开来,分解不同操作场景下的噪声处理策略。一组紧密耦合的方法,包括:1)在测试相关电路中的噪声弹性以进行过筛最小化; 2)在结构测试中近似最坏情况的功能模式噪声以进行边际时序故障检测;以及3)诊断由噪声引起的时序故障提出了在扫描路径和扫描时钟树中进行诊断以优化设计的方法,以实现高成品率,低测试逃逸率和快速硅重新旋转的总体目标。开发这些技术时,考虑到与主流的可测性设计架构和纳米级设计中使用的测试平台具有最大的兼容性,从而实现了工业流程的无缝适配。这些技术的成功整合将大大降低风险和成本,从而显着加快硅生产量的提升过程。

著录项

  • 作者

    Chen, Mingjing.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Computer Science.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号